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Abstract

The paper argues that a low capital gains tax fuels asset price instability. The reason is that

a lower tax increases the price sensitivity to investors’ beliefs which, when agents learn from

prices, makes self-fulfilling booms and busts more likely. Applying this theory to the United

States, I establish a connection between capital gains tax cuts and the proliferation of stock

market fluctuations since the 1980s. The structurally estimated model is consistent with many

asset pricing facts and suggests that tax cuts account for 40% of the observed rise in the S&P

500’s price-dividend ratio volatility. Moreover, while the model replicates the observed decrease

in excess return predictability, it also implies a decline in the stock market’s informational

efficiency since the 1980s.
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1.- Introduction

Economists have long been in search of a tax instrument to mitigate financial instability. A Fi-

nancial Transactions Tax has been a prominent proposal, endorsed by influential figures such as

Keynes (1936), Tobin (1978) or Stiglitz (1989). Despite its widespread popularity, research has

consistently indicated that, while it may curb speculative trading, its impact on price volatility

remains unclear.1 Against this backdrop, this paper argues for the Capital Gains Tax (CGT) as a

more effective tool in ensuring asset price stability, offering new theoretical insights and empirical

evidence to support its efficacy.

Capital gains are at the heart of a long-standing view in finance that characterizes booms and

busts as self-fulfilling prophecies. The sequence goes as follows: Initial positive news ignites investor

optimism, leading to an increase in demand for the asset and a rise in its price; these gains further

stoke the initial optimism, thereby reinforcing the process. However, at a certain point, a ”Minsky

Moment” occurs, flipping this cycle into a downward phase of pessimism and price deflation.2 This

paper argues that a CGT mitigates this expectations-price spiral. Specifically, a higher tax would

cool down the optimism induced by good news, thereby reducing the pass-through from beliefs to

asset demands and prices; on the contrary, a lower tax exacerbates the effect of bullish beliefs on

asset prices.

I formalize these points using an asset pricing model à la Lucas (1978) with a probabilistic

tax on realized capital gains. I start with a version that is general (nesting models with habits,

long-run risk, or subjective beliefs), but takes the sequence of expectations as given. In a world

with taxes, agents need to pencil in the probability of tax payments and, as a result, the tax rate

times the probability of tax payments appear as a wedge between (pre-tax) expectations and prices.

Thus, the tax level shields price volatility from belief fluctuations. The finding holds under minimal

constraints on the given trajectory of beliefs and is compatible with many available expectations

models.

Nonetheless, as suggested above, taxes could also influence beliefs dynamics. To explore that

possibility, the model is specialized, and beliefs are made model-consistent. First, I assume full

information rational expectations. However, since this hypothesis has been consistently rejected

when survey expectations are used (e.g., Greenwood and Shleifer (2014), Adam et al. (2017),

Bordalo et al. (2019)), I then relax the information endowments. In particular, agents have only

1See, for instance, Buss et al. (2016) , Buss and Dumas (2019), or Dávila (2023) for theoretical analysis and
Umlauf (1993) or Cappelletti et al. (2017) for empirical results that cast doubts on the ability of a tax on financial
transactions to stabilize asset prices.

2Keynes (1936), Minsky (1976) or Kindleberger (1978) are classic references of this view.
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imperfect market knowledge such that they cannot deduce the true model of price formation despite

behaving rationally; instead, they learn about it from price data as in Adam and Marcet (2011).3

In this case, an expectations-price spiral emerges, with an Euler Equation connecting expectations

to prices and Bayesian updating linking prices back to expectations.4 This expectations formation

process replicates key features of survey data such as extrapolation and sluggish adjustments.

With full information rational expectations, beliefs fluctuations only reflect fundamental risk.

Similarly to the case with given beliefs, taxes reduce the transmission of fundamental risk to price

volatility. Under learning, though, expectations vary not only due to fundamental risk, but also

due to self-referential logic. It turns out that this self-fulfilling dynamic is influenced by the tax

level. For instance, a lower tax makes expectations self-fulfillment easier, as prices react more to a

change in beliefs (as under rational expectations), which in turn induces further changes in beliefs.

Thus, a low tax eases the de-anchoring of beliefs from their fundamental value, exacerbating the

non-fundamental component of price volatility.

Although this theory finds precedent in Haugen and Heins (1969) and Haugen and Wichern

(1973), the most common view among this scarce literature is that a CGT destabilizes asset markets

(e.g., Somers (1948), Somers (1960), Gemmill (1956), Stiglitz (1983)).5 Since higher taxes increase

the penalty of selling assets, investors might hold their assets longer than otherwise, which has

been known as the lock-in effect. This effect would become particularly acute when price booms

increase the amount of unrealized gains, as the lock-in decreases the available supply of shares in

the market, intensifying upward price pressures. To address this concern, the probabilistic tax is

replaced with an explicit decision about when to realize the stock of capital gains. In particular,

each investor manages a stock of unrealized capital gains facing accumulation costs as in Gavin

et al. (2007) and Gavin et al. (2015), such that the deferral of gains realization is penalized.

If the lock-in effect is sufficiently pronounced, a high tax rate could significantly reduce the

realization of capital gains. This reduction may lead to a diminished tax burden, completely

counteracting the stabilization effect previously mentioned. The magnitude of the lock-in effect

hinges on the tax elasticity of realization, a key parameter within the cost function. Particularly,

3Other papers have emphasized the idea of learning about fundamentals, often linked to new technologies, as
Pástor and Veronesi (2006) or Pástor and Veronesi (2009). Along this line, Bordalo et al. (2023) pointed out that
over-reaction of long term earnings expectations generates booms and busts in stock prices. These mechanisms share
with Learning the idea of subjective beliefs fluctuations driving excess price volatility. A tax on capital gains (which
in these models are related to longer term payoffs) would affect price volatility similarly.

4In the model, stock demand is a mediator: higher taxes makes demand less responsive to beliefs, which translate
into less responsive prices. This is entirely consistent with the empirical evidence in Giglio et al. (2021) that, using
survey and administrative data from Vanguard investors, showed that they adjust their portfolio following their
beliefs less when they face higher capital gains taxes.

5See Dai et al. (2008) for a review on the effects of a CGT on the price and returns levels.
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if this elasticity is markedly negative, surpassing a threshold value of -1, the lock-in effect becomes

predominant. Thus, the model can yield an increase in stability or instability when taxes are cut

depending on the values of the tax elasticity of realization.6

In the second part of the paper, this theory is employed to examine the recent history of the US

stock market. A remarkable fact has been that, despite the Great Moderation in macroeconomic

aggregates, stock market volatility did not fall. This disconnect between the stock market and the

macroeconomy is an observation difficult to explain for many macro-finance models. For instance, in

models with external habits as Campbell and Cochrane (1999), a less volatile consumption growth

would lead to a more stable risk premium and prices; in models with long-run risk as Bansal and

Yaron (2004), lower risks might account for a run-up in valuations but not for larger swings; even

in models of subjective beliefs as Adam et al. (2016), smaller macroeconomic shocks would lead

to smaller forecast errors, yielding more stable beliefs and prices. While a popular belief is that

the prolonged decline in the risk-free rate would have prompted the emergence of rational bubbles

(e.g., Martin and Ventura (2018)), this paper suggests another complementary possibility: the

successive cuts in the CGT observed since the late 1970s would have destabilized the stock market,

counteracting the stabilizing effects of lower macroeconomic risk.7,8,9

To quantitatively evaluate this hypothesis, I first outline five facts characterizing changes in

the stock market since the 1980s with respect to the previous four decades. Apart from the lack

of a Great Moderation in the stock market (e.g., the variance of the log PD ratio doubled after

the 1980s), excess stock return predictability went down substantially, mostly related to a change

from a positive to a negative correlation between returns and dividend growth. Furthermore, the

valuation levels became exuberant as a result of a strong surge in capital gains the outpaced the

increase in mean dividend growth, but the equity premium was very similar to the pre-1980s level.

Finally, the response of stock prices to identical shocks was about 60% higher since the 1980s and

prices also exhibited a larger sensitivity to investors beliefs as measured by surveys.

6Sialm (2006) also included taxes in a Lucas (1978) framework. However, he focuses on a flat ”consumption tax”
that affects both the acquisition of new shares and investors’ wealth. On the contrary, I focus on dividends and
capital gains taxes with clear empirical counterparts. Besides, in their setup tax changes drive all the action while I
emphasize the role of the tax level in regulating the overall volatility.

7While the risk-free was low around the 2000s, the condition of a risk-free rate below the economy growth rate
would also be met in the 1950s and 1960s, but bubbles did not follow in those decades. The quantitative investigation
of how much rational bubbles can explain and complement the tax theory of this paper is left for future research.

8The average effective marginal tax rate on capital gains fell from a maximum of 18% in the early 1970s to a
minimum of 5% in 2008. This fall was the consequence of statutory tax reforms, in particular in 1978 and 1997, but
also of different regulatory changes that encouraged a movement of assets to tax-free accounts. See Section 3.

9The link between lower taxes and volatility echoes a previous episode: the rise and fall of Wall Street in the
Roaring Twenties was preceded by a cut in the top Capital Gain Tax (CGT) rate from 73% to 12.5% in 1921. In the
opposite direction, Japan introduced a tax on stock capital gains in 1989 to curve its bubble.
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Then, a quantitative version of the model, that includes stochastic taxes and stock repurchases,

is structurally estimated via an extension of the Simulated Method of Moments, following Adam

et al. (2016). A remarkable observation is the model’s ability to pass almost all individual t-

tests, with t-stats generally below 2, indicating a robust fit to the data. Importantly, the estimated

parameters are within the range of other studies. In particular, the baseline estimated tax elasticity

of realization is -0.30, within the range obtained by Agersnap and Zidar (2021); the risk-aversion is

slightly above 1, as in many macroeconomic applications; and the learning speed is 0.03, virtually

identical to the estimates using real-world data.

I use the model to estimate the average effect of capital gains tax cuts. For this purpose,

I simulate a ”no tax cuts” scenario, holding the tax rate steady at its average pre-1980s level

throughout the entire period following the 1980s. Then, I calculate the difference in a specific

statistic (e.g., the variance of the PD ratio) between scenarios with tax cuts and without them and

compare it to the observed change in the empirical data. Thus, a relative average treatment effect

is obtained. For the full-fledged model, tax cuts account for 40% of the observed increase in the

volatility and 10% of the higher mean PD ratio.10

If the lock-in effect is ignored, the impact of tax cuts is magnified, generating an increase in

volatility equal to 80% of the observed one. This provides a quantitative measure of the lock-in effect

relevance. On the contrary, a model with Rational Expectations attributes 25% of the increase in

volatility to tax cuts, which illustrates that although learning is crucial to have a better data fit, the

basic mechanism linking lower taxes to greater volatility is not learning-dependent.11,12 Alternative

assumptions about taxes such as near-term tax foresight or tax learning do not significantly change

the estimated effect.

While the paper has emphasized the role of capital gains taxes, dividend tax cuts were also

important. In line with McGrattan and Prescott (2005), the model shows that the dividend tax

cuts were relevant to explain the increase in the PD ratio, accounting for 20% of the valuation

run-up; however, their contribution to the increase in the variance is more modest, below 10%.

This result suggests a complementarity between dividends and capital gains taxes in terms of their

effect in the mean and variance of stock prices, respectively. Furthermore, the model attributes

10This complements the time series evidence presented in Sialm (2009) and Brun and González (2017) relating
lower taxes to higher price levels.

11There is a large literature on how learning might contribute to solving asset pricing puzzles. Some references are
Timmermann (1993), Bullard and Duffy (2001), Cogley and Sargent (2008), Adam et al. (2016), Adam et al. (2017),
Jin and Sui (2022).

12However, the version with Rational Expectations perform poorly in other dimensions. In particular, the PD
ratio under Rational Expectations falls short of serial correlation, as it inherits the correlation of the dividend growth
process that is notably lower than that of the PD ratio.
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an important role to shares buybacks, which explain about 35% of the increase in the PD ratio

volatility. While this figure resembles the one for CGT cuts, the channel through which it operates

is different. Using a Campbell and Shiller (1988) decomposition, it turns out that CGT cuts

(buybacks) affect the covariance between future returns (future dividends) and current prices.

In line with the model’s ability to mirror the variance decomposition of the PD ratio, it also

effectively captures the observed reduction in the predictability of excess stock returns. However,

the interpretation of this decline as an increase in efficiency is generally problematic by the Joint

Hypothesis Problem (Fama (1970)). Instead, I use the model to explore the implications of tax

cuts for informational efficiency. While in the model with learning prices are not informationally

efficient as they reflect the imperfect information of investors (Adam et al. (2017)), the version

with rational expectations represents an efficient benchmark. Then, a measure of efficiency boils

down to tracking the deviations of the model with learning from the one with rational expectations.

It turns out that in the full-fledged model, the tracking error exhibits a 60% escalation since the

1980s. CGT cuts account for 58% of this reduction in informational efficiency as lower taxes make

prices more sensitive to non-fundamental fluctuations coming from subjective beliefs.

While the main topic of the paper is stock market volatility, the model has also some implications

for the equity premium. It generates an equity premium of about 4% with a relatively low risk-free

rate, realistic consumption and dividend growth processes, a non-negative discount factor and a

low risk aversion coefficient, which are the elements of the equity premium puzzle identified by

Cochrane (2017). Differently from standard macro-finance models that typically need either a high

risk-aversion level or high fundamental volatility to match the mean returns, this paper resorts

to two alternative forces. In line with the Learning literature, non-fundamental volatility coming

from subjective beliefs makes compatible realistic income processes with high and volatile stock

returns (Adam et al. (2016), Adam et al. (2017)). Besides, the inclusion of tax cuts (as suggested

in McGrattan and Prescott (2003)) imparts a trend on the PD ratio that helps generating high

returns without exaggerating non-fundamental volatility.

Finally, the model offers a potential rationale for the existent statistical cross-sectional evidence.

Using a difference-in-difference approach around the 1978 and the 1997 CGT cuts, Dai et al. (2013)

documented that the stock returns volatility of portfolios with large unrealized capital gains or

non-dividend paying stocks went significantly up with respect to portfolios with less unrealized

gains or dividend-paying securities. They suggest that this increase in volatility following tax cuts

might be related to a reduction in the risk-sharing with the government, an idea going back at

least to Lerner (1943) and further explored in Sikes and Verrecchia (2012). However, simulations
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of the estimated model suggest that if taxes are not rebated, investors’ income ends up being more

-not less- volatile, as fluctuations in the realization of capital gains then have an actual impact on

investors’ budgets.13 In contrast, the idea of tax cuts boosting price-expectations spirals offers an

alternative explanation.

The rest of the paper proceeds as follows. Section 2 studies the relationship between a CGT and

asset price volatility in an asset pricing model. Section 3 applies that theory to examine the recent

history of the US stock market, presenting estimates of the effects of tax cuts on stock market

volatility. Section 4 briefly concludes by summarizing the results and suggesting some venues for

future research.

2.- Theory

This section examines the impact of the CGT on the volatility of the PD ratio using an asset pricing

model. In Section 2.1. a general consumption-based model is set up. It includes a tax on realized

capital gains, where realization is driven by liquidity shocks. Keeping the generality of this model,

Section 2.2. shows how taxes influence the pass-through from beliefs fluctuations to prices, taking

beliefs as given. In Section 2.3., the model is specialized to derive additional results when beliefs

are internal to the model. It is shown that when agents learn from prices, beliefs dynamics are also

affected by taxes. Finally, in Section 2.4., investors also decide when to realized the accumulated

capital gains so that taxes give rise to the lock-in effect, which counteracts the previous results to

a degree determined by the tax elasticity of realization.

2.1.- The model

In this section, a general consumption-based asset pricing model is set up. Its basic layer is the

Lucas (1978)’s tree model, generalize to allow for the presence of habits, different fundamental

growth processes, a general probability measure and a tax on realized capital gains.

The economy is populated by a unit mass of infinitely living investors. This is a stochastic

exchange economy with a single risky asset S in the form of a contract that each period pays

dividends Dt, consisting of a perishable consumption good. Dt is a random variable that evolves

according to some exogenous stochastic process specified later. When the time starts, each investor

13Furthermore, the tax law treats gains and losses very asymmetrically. Investors can only claim a compensation
for losses up to $3, 000 which is a tiny amount, while the rest is transferred as a tax credit to compensate for future
tax liabilities. In other words, the tax credit is transferred to future idiosyncratic good states (for instance, states
with gains), being then a poorly risk-sharing device. I thank Andrea Prestipino for pointing this out.
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is endowed with one unit of stock (Si
−1 = 1). There are competitive markets for goods and stocks.

Goods are used as the numeraire and stocks are tradable at a real price P . Short selling is not

allowed, and there is an upper bound on the amount of stock holdings, that is, 0 ≤ Si
t ≤ S̄.

Lower and upper bounds on Si
t are assumed for convenience: economically, the lower bound rules

out short-selling strategies aimed at avoiding taxes; mathematically, these bounds ensure that the

feasibility set is compact.

Every period, investors face some risk of being hit by a catastrophic liquidity shock. zit ∼

Bernoulli(π) is a random variable indicating that possibility, with π being the probability of that

event occurring. If the event materializes (zit = 1), investor i has to sell all her stock holdings. There

is a tax τ ∈ [0, 1) on realized capital gains.14,15 Capital gains and losses are treated symmetrically.

Tax revenues are transferred back to each individual according to her contribution, represented by

T i
t .

Investors know the stochastic processes followed by Dt and z
i
t. Besides, they take T i

t and Pt as

non-control variables. However, other investors beliefs are unknown for agent i, that is, investors

homogeneity is not common knowledge and beliefs coordination is not taken as given as in models

with Rational Expectations. The underlying probability space is given by (Ωi,Bi,P i) where Ω is

the state space with ω = {Dt, z
i
t, T

i
t , Pt}∞t=0 as a typical element, B denotes the σ-algebra of Borel

subsets of Ω and P a subjective probability measure over (Ω,B).

Investors’ program. Each investor faces a consumption-savings problem: she chooses se-

quences of consumption, stock holdings and stock purchases {Ci
t , S

i
t , X

i
t}∞t=0 by solving the following

optimization program:

max
{Ci

t ,S
i
t ,X

i
t}∞t=0

EPi

0

∞∑
t=0

δtU(Ci
t , H

i
t) (1)

subject to the budget constraint

Ci
t + PtX

i
t ≤ DtS

i
t−1 + zit

(
Si
t−1Pt − τ(Gi

t−1 + (Pt − Pt−1)S
i
t−1)

)
+ T i

t (2)

the stock holdings law of motion

Si
t = (1− zit)S

i
t−1 +Xi

t (3)

14Note realization is exogenous, driven by the liquidity shock. In section 2.3, I endogeneize π by including portfolio
adjustment costs. The introduction of this liquidity shock is equivalent to assume that investors expect that a fixed
proportion of the capital gains will be realized as in Sialm (2009).

15In equilibrium, a fraction π of agents sells their assets and pay taxes (let Zt =
1
n

∑n
i=1 z

i
t; by the LLN, Zt

p−→ π);
hence, the effective rate on total capital gains is πτK .
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the unrealized capital gains Gi
t law of motion

Gi
t = (Gi

t−1 + (Pt − Pt−1)S
i
t−1)(1− zit) (4)

and the stock holdings bounds specified above, given the initial individual stock holdings.

δ ∈ (0, 1) is a discount factor and Ht is a time-varying habit. It is assumed to depend on past

individual and aggregate consumption H i
t = H(Ct−1, C

i
t−1), embedding models with both internal

and external habit formation (e.g., Abel (1990), Constantinides (1990), Campbell and Cochrane

(1999)). U is assumed to be continuous and concave on both arguments.

The degree of generality of the utility function, the dividends stochastic process and the subjec-

tive probability measure it is enough to encompass a wide range of asset pricing models, including

popular elements such as habits, long-run risk or subjective beliefs. The next section derives a

result in this setup for a given vector of beliefs and later I will specialize U , {Dt} and P to obtain

results for model-consistent beliefs.

2.2.- A general result with exogenous beliefs

In the previous model, the following Euler Equation must be satisfied in equilibrium

Pt = EPi

t

[
δ
λt+1

λt

(
Dt+1 + Pt+1 − zit+1τ(Pt+1 − Pt)

)]
(5)

where λt is the Lagrange multiplier in the period t budget constraint, potentially depending on

current and past consumption. Assume agents know the probability of the liquidity shock and let

βDt ≡ EPi

t

[
δ λt+1

λt

Dt+1

Dt

]
, βPt ≡ EPi

t

[
δ λt+1

λt

Pt+1

Pt

]
and βMt ≡ EPi

t

[
δ λt+1

λt

]
. Manipulating the previous

expression and assuming Cov
(
λt+1

λt
Pt+1, z

i
t+1

)
= 0 the following PD ratio can be obtained:16

Pt

Dt
=

βDt
1− (1− πτ)βPt − πτβMt

(6)

This expression offers a structural mapping, p : R3
+ → R+, from a vector of beliefs βt into the PD

ratio. Assuming for a moment that βt is given, the following proposition holds.

Proposition 1. Let Σ be the beliefs covariance matrix and V(Pt/Dt) the variance of the PD

ratio. Assume

16In the next subsection I show that Cov
(

λt+1

λt
Pt+1, z

i
t+1

)
= 0 holds in models involving both Rational Expecta-

tions (as Bernoulli trials and the fundamentals growth shocks are both exogenous and i.i.d.) and Learning (as agents
think of prices as an AR(1) process).
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i. βPt , β
M
t < 1;

ii. βPt − βMt >
1−βP

t
3πτ ;

iii. Var(βMt ) < QVar(βPt ), with Q ≡ (1−βP
t +πτ(βP

t −βM
t )+2(1−πτ)(βP

t −βM
t ))(1−πτ)

(1−βP
t +πτ(βP

t −βM
t )−2πτ(βP

t −βM
t ))πτ

.

Then, the matrix of cross-derivatives ∂
∂τ∇ΣV(Pt/Dt) that measures the sensitivity of V(Pt/Dt) to

Σ is dominated by its negative elements.

Proof. Appendix B.1

Conditions i.-iii. imposes some limits on beliefs. Condition i. puts an upper bound, which is

analog to the one required in Adam et al. (2016) to ensure positive prices. Condition ii. requires the

gap between beliefs about capital gains and risk changes to be above certain threshold; if this gap is

too small or even negative, investors expect a subsidy rather than a tax, so τ boosts returns rather

than diminishing them. In a boom, the threshold becomes smaller as βPt approaches 1; besides, the

gap βPt −βMt increases as price growth expectations increases while expected risk decreases. Finally,

iii. requires that beliefs about future risk are not too volatile with respect to risk-adjusted capital

gains. The scaling constant Q is typically larger than 1 (all it takes is πτ < 0.5; historical values

are well below this threshold), so the condition is rather permissive for expected risk variations.

Note that these three conditions are also sufficient for the pricing formula (6) to have a positive

denominator.

The proof in Appendix B.1 shows that the variance of the PD ratio can be approximated as

V
[ Pt

Dt

]
≈ ω(τ)Σω(τ)T (7)

where ω ≡ ∇p(b) with b ∈ R3 being the approximation point; ω(τ) is used to highlight the

dependence of ω on taxes. To understand how τ affects the mapping from Σ to V(Pt/Dt), I look at

the signs and magnitudes of the elements of ∂
∂τ∇ΣV(Pt/Dt). Conditions i-iii ensure almost all its

elements are negative. The only exception is the element in the right bottom corner, ∂2Pt/Dt

∂βM
t ∂τ

∂Pt/Dt

∂βM
t

,

which might be positive under plausible parameter values. Condition iii. ensures that the potential

counteracting effect of this element is always dominated. Thus, it can be concluded that a lower

tax makes prices more sensitive to beliefs dynamics.

The result holds under a general consumption-based asset pricing setup that requires only mild

restrictions on beliefs. Given the wealth of expectations models, this result offers an insight into

the direct effect of a CGT on price stability across asset pricing theory. Nonetheless, beliefs might

be affected in different ways by taxes, potentially amending Proposition 1. In the next section, I
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study this indirect effect in particular setups.

2.3.- Particular results with endogenous beliefs

In this section, I specialize some of the previous assumptions to derive additional results when

beliefs are internal to the model. Assume U(Ci
t , H

i
t) = Ci

t such that λt = 1 ∀t. Let dt ≡ ln Dt
Dt−1

and consider the following stochastic process:

dt = (1− ρ)µ+ ρdt−1 + εdt (8)

whereby the log dividend growth contains a drift, an autoregressive component whose weight is

determined by 0 < ρ < 1 and an innovation εdt ∼ i.i.N (0, σ2d). Assume that the agents’ informa-

tion set includes this process as well as the probability of liquidity shocks. Then, the only thing

missing to fully characterize P is a pricing function which, as a general equilibrium object, de-

pends on agents’ information about other market participants. For that, consider two models: full

information and Rational Expectations (RE); and imperfect information and Learning.

Rational Expectations Equilibrium. First, assume that rational agents have all the infor-

mation about market participants. In particular, P i = Pj for all pairs of i, j is common knowledge.

Then, the standard procedure to solve an expectational difference equation -forward iteration on

prices, the use of the Law of Iterated Expectations and a standard transversality condition- delivers

the following expression:

Pt = Et

[ ∞∑
j=1

( δ

1− δEt(zt+1τ)

)j
Dt+j

j−1∏
l=1

(1− zt+lτ)

]
(9)

The current price is equal to the familiar discounted sum of future dividends slightly modified by

a two-fold τ influence. First, τ appears in the denominator of the discount factor, amplifying it.

Second, it dampens how longer-term dividends are expected to affect current prices (note the upper

index j − 1 in the product operator). Given the information that agents have about fundamentals,

the expression can be further simplified to obtain

PRE
t

Dt
=

∞∑
j=1

f0(τ, j)f1(dt, j) (10)
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with f0(τ, j) =
(

δ
1−δπτ

)j
(1− πτ)j−1 and

f1(dt, j) = exp

{
µj +

σ2d
2(1− ρ)2

(
j − 2

ρ

1− ρ
(1− ρj) + ρ2

1− ρ2j

1− ρ2

)
+

ρ

1− ρ
(1− ρj)(dt − µ)

}

which converges iff
(

δ
1−δπτ

)
(1 − πτ)exp

{
µ +

σ2
d

2(1−ρ)2

}
< 1.17 Given the autoregressive nature of

growth, the PD ratio at time t is fully determined by the current growth rate dt, which encapsulates

expectations about short-term dividends and future prices. When ρ = 0, dividend growth becomes

an i.i.d. process and the equilibrium PD ratio boils down to the following constant

PRE2
t

Dt
=

δexp{µ+ σ2d/2}
1− (1− πτ)δexp{µ+ σ2d/2} − δπτ

(11)

provided that | δ(1−πτ)
1−δπτ exp{µ+σ

2
d/2}| < 1 so that the series convergence. This expression reproduces

the structure of the general pricing equation (6), being a special case for βMt = 1 and βDt = βPt =

δexp{µ+ σ2d/2}. Thus, investors expect capital gains to mimic dividend growth and the PD ratio

becomes a constant.

Internally Rational Equilibrium. Now consider the more general case where agents have

limited market knowledge, ignoring P i = Pj for all i, j pairs. In this case, the Law of Iterated

Expectations (LIE) does not apply as the probability measure of the marginal agent in future

periods Pj is unknown for i, being potentially different from P i. Therefore, the above-described

standard procedure cannot be applied (see Adam and Marcet (2011)). Instead, the expression

characterizing equilibrium prices is

Pt =
δ

1− δEPi

t (zt+1τ)
EPi

t

[
Dt+1 + Pt+1(1− zit+1τ)

]
(12)

showing that the current asset price is equal to the expected one-period ahead discounted payoffs.

This can be easily rewritten in terms of the PD ratio such that

Pt

Dt
=

EP
t

[
Dt+1

Dt

]
1− EP

t

[
Pt+1

Pt
(1− zt+1τ)

]
− δτEP

t (zt+1)
(13)

that is, the ratio depends on beliefs about dividends and price growth and the probability of

17The derivation of the equilibrium PD ratio follows the procedure outlined by Burnside (1998). The inclusion
of taxes is an easy extension given that liquidity shocks and dividend growth shocks are independent and then,

Covt
(∏j

l=1

Dt+l

Dt+l−1
,
∏j−1

l=1 (1− zt+lτ)
)
= 0.
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the liquidity shock. Although agents know EP
t

[
Dt+1

Dt

]
= exp{(1 − ρ)µ + ρdt + σ2d/2} ≡ β̄t

D
and

EP
t (zt+1) = π, expectations about future prices (and its interaction with future taxes) have not been

determined yet. Since the LIE cannot be applied, beliefs about future prices must be characterized

elsewhere and then plugged in expression (13) to pin down Pt. In other words, under imperfect

knowledge, rational agents cannot deduce equilibrium prices from their optimality conditions and

need a model of prices to form beliefs. The proposed model is18

ln
Pt

Pt−1
= lnbt + εPt (14)

lnbt = lnbt−1 + νbt (15)

with b being an unobserved permanent component and εPt ∼ i.i.N (0, σ2P ) and ν
b
t ∼ i.i.N (0, σ2b ).

Agents use a Kalman filter to estimate bt. Let lnbt|ωt−1 ∼ N (lnβt−1, σ
2) be the prior belief based

on information up to t − 1 and σ2 =
σ2
b+

√
(σ2

b )
2+4σ2

bσ
2
P

2 the steady state Kalman filter uncertainty.

Optimal filtering implies that the posterior expectations when period t information is revealed are

given by lnbt|ωt ∼ N (lnβt, σ
2) with19

lnβt = lnβt−1 + g
(
ln
Pt−1

Pt−2
− lnβt−1

)
(16)

and

g ≡ σ2

σ2 + σ2P
(17)

Hence, subjective price growth expectations are given by

EP
t

[Pt+1

Pt

]
= ρ̄βt (18)

with ρ̄ ≡ exp
{

σ2+σ2
P+σ2

b
2

}
. The last object to be determined is EP

t

[
zt+1

Pt+1

Pt

]
. Given the subjective

model of prices,

EP
t

[
zt+1

Pt+1

Pt

]
= EP

t

[
zt+1(ρ̄βt + ut + ϑt+1 + εPt+1)

]
= EP

t

[
zt+1

]
ρ̄βt = πρ̄βt (19)

18This is only one among many possible options. It is the researchers’ choice, in the same vein as the form of the
utility function or the particular stochastic process for fundamentals. The reason for choosing this subjective model
is twofold. Theoretically, it is close to RE, sharing a similar autoregressive structure. Empirically, it is consistent
with the extrapolation and sluggishness of investors’ beliefs detected in surveys.

19As it is standard in the Learning literature, equation (56) contains lagged price growth. This assumption imparts
recursivity in the model and rules out equilibria multiplicity. It can be rationalized by assuming that agents observe
in period t information about the lagged transitory component εPt−1. See Adam et al. (2017) for a discussion.
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Where ut ∼ i.i.N (0, σ2) is the Kalman forecast error. Plugging the subjective price expectations

into the pricing function (12), the equilibrium PD ratio with imperfect information and learning

reads as
PL
t

Dt
=

δβ̄t
D

1− (1− πτ)δρ̄βt − δπτ
(20)

assuming that 1 > (1− πτ)δρ̄βt + δπτ hodls. In terms of the general pricing formula, βMt = 1 and

βDt = δβ̄t
D

as with RE, but βPt = δρ̄βt. Price beliefs might differ from fundamental beliefs, being

an additional source of instability.

Taxes, beliefs and price instability. Having characterized model-consistent beliefs, now the

relationship between the CGT and the variance of the PD ratio can be revisited. While before

beliefs were taken as given and the main object of the interest was the mapping from beliefs to

prices, now both the effect of taxes on beliefs dynamics and the total of effect of taxes on price

instability can be analyzed. The following propositions summarize the results.

Proposition 2.1 Assume rationality and full information such that the equilibrium PD ratio

is given by equation (10). Then, up to a first-order approximation, V(PRE
t /Dt) is a decreasing

function of τ because the sensitivity of prices to beliefs ωRE is decreasing on τ . ΣRE is unaffected

by taxes.

Proposition 2.2 Assume rationality, imperfect information and Learning about prices such

that the equilibrium PD ratio is given by equation (20). Then, up to a first-order approximation,

V(PL
t /Dt) is a decreasing function of τ because both ωL and ΣL are decreasing functions of τ .

Proof. Appendix B.2.

The proof shows that under Rational Expectations, a first-order approximation delivers the

following PD variance:

V
(PRE

t

Dt

)
≈ (ωRE)2ΣRE (21)

with

ωRE =
ρ

1− ρ

∞∑
j=1

f0(τ, j)f1(dt, j)(1− ρj) (22)

and

ΣRE =
σ2d

1− ρ2
(23)

The proof shows ∂ωRE/∂τ < 0. Thus, Proposition 1 goes through: taxes reduce the transmission

of belief fluctuations to price volatility. Additionally, now the fluctuations of expectations can be

characterized. It turns out they are fully determined by the logarithmic growth rate dt so that

the covariance matrix of beliefs boils down to the variance of the dividend growth. Hence, ΣRE is
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independent of τ . Altogether, taxes reduce the variance of the PD ratio

dV(PRE
t /Dt)

dτ
< 0 (24)

by reducing ωRE without affecting ΣRE . In the case of i.i.d. growth, V(PRE2
t /Dt) = 0, and taxes

cannot play any role.

When there is imperfect information and agents cope with it by learning from price data, taxes

also influence the belief covariance matrix. Appendix B.2 shows that

V
[PL

t

Dt

]
≈ ωLΣL(ωL)T (25)

In this expression, ωL is given by

ωL =

(
ρ

δexp
{
µ+ σ2d/2

}
1− (1− πτ)δexp

{
µ+

σ2+σ2
b+σ2

P
2

}
− δπτ

,

δ2exp
{
µ+ σ2d/2

}
(1− πτ)

(
exp
{
µ+

σ2+σ2
b+σ2

P
2

}
− 1
)

(
1− (1− πτ)δexp

{
µ+

σ2+σ2
b+σ2

P
2

}
− δπτ

)2
) (26)

It is easy to check ωL > 0 and it decreases on τ whenever investors expect positive capital gains.

Furthermore, the proof shows that

ΣL =

 V(lnβt) Cov(lnβt, dt)

Cov(lnβt, dt) V(dt)

 =
σ2d

1− ρ2︸ ︷︷ ︸
=ΣRE

ν(τ) υ(τ)

υ(τ) 1


︸ ︷︷ ︸

≡M

(27)

where ν(τ) and υ(τ) are constants defined in Appendix B.2., and the notation emphasizes their

dependence on τ . ΣL contains two elements: i) the fundamental risk captured by ΣRE ; ii) a matrix

M showing how this risk is propagated through expectations fluctuations. Under RE, beliefs about

future payoffs are determined by dt; thus, fundamental risk is the only driver of beliefs volatility.

Under Learning, though, dt fully determines beliefs about short-term dividend growth but not

beliefs about capital gains, which are also affected by their past values. In this case, fundamental

risk is amplified through this price beliefs autoregression, giving rise to extra volatility.

It turns out that taxes influence the degree of fundamental risk amplification through subjective.
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In particular,
∂V(lnβt)

∂τ
=
∂ν(τ)

∂τ
ΣRE < 0 (28)

that is, lower taxes amplify the effect of fundamental volatility in belief fluctuations and then,

on price volatility. Furthermore, Cov(lnβt, dt) > 0 and

∂Cov(lnβt, dt)
∂τ

=
∂υ(τ)

∂τ
ΣRE < 0 (29)

Thus, lower taxes increase the comovement between short-run fundamental growth and capital

gains beliefs and, as result, asset prices react more to fundamental shocks.

Altogether, when agents learn from prices, taxes reduce the variance of the PD ratio

dV(PL
t /Dt)

dτ
< 0 (30)

by reducing both ωL and ΣL. In other words, differently from RE, under Learning taxes also have

an indirect effect on the variance of the PD ratio via capital gains beliefs. These beliefs amplify

the fundamental risk, wtih the degree of amplification inversely related to the tax level. The direct

(through ωL) and indirect (through ΣL) tax effects reinforce each other: lower taxes increase the

pass-through from beliefs to prices; more volatile prices translate into more fluctuating beliefs.

Hence, under Learning, the tax level becomes a powerful regulator of price volatility.

2.4.- The lock-in effect

In this section, investors also decide when the accumulated capital gains are realized and taxes are

paid. In this case, higher taxes might lead to investors holding their assets longer than otherwise

since the value of selling gets reduced. This is known as the lock-in effect. The literature has

very much emphasized this effect, arguing that a CGT would boost -rather than dampen- price

volatility (e.g., Somers (1948), Somers (1960), Stiglitz (1983)). Now, I include this effect and study

the conditions under which it dominates the stabilizing effect analyzed in the previous section.

In this version, the liquidity shock zit is replaced by a choice of the timing of realization.

Following Gavin et al. (2007) and Gavin et al. (2015), each investor manages a stock of unrealized

capital gains Gt facing portfolio management costs. G follows this law of motion

Gt = Gt−1 + (Pt − Pt−1)St−1 − gt +ACt (31)
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with gt are the realized capital gains, and ACt stands for adjustment costs. It is assumed ACt =

gt−Gt−1−ϕ(π̄t)Gt−1 for π̄t ≡ gt/Gt−1, with ϕ
′(·) > 0, ϕ′′(·) < 0. It follows that when the realization

of capital gains is deferred, the cost function penalizes investors with extra unrealized capital gains,

increasing the future tax liability of households. With these adjustment costs, investors face an

additional trade-off: realize gt capital gains and pay taxes τKgt today or defer the realization and

face an extra tax liability in the future.

Altogether, the investor’s problem consists now in choosing sequences of consumption, stock

holdings, stock purchases, realized and unrealized gains {Ct, St, Xt, gt, Gt}∞t=0 to maximize lifetime

welfare (1), subject to the stock bounds, the stocks law of motion (3), the unrealized capital gains

law of motion (31) and the budget constraint

Ct + PtXt ≤ DtSt−1 − τgt + Tt (32)

Let ϕ(π̄t) = (τ)1+ξln(π̄t). It has two components. First, the penalty grows with the tax level for

standard values of ξ, reflecting that higher taxes make the delay more costly. Second, the penalty

decreases with the amount of gains realized; on the contrary, it explodes if agents realize nothing,

that is, limgt→0−ϕ(π̄t) = +∞.

Given the assumption of risk neutrality, the first-order conditions boil down to

Pt = δEP
t

[
Dt+1 + Pt+1 − µt+1(Pt+1 − Pt)

]
(33)

π̄t = µtτ
ξ (34)

µt = τ1+ξEP
t

[
δµt+1

(
1− ln(π̄t+1)

)]
(35)

Equation (33) replaces equation (5). They differ only in one detail: the liquidity shock that

determined the payment of taxes zt+1 is replaced by the Lagrange multiplier associated with the

capital gains accumulation equation (31). The presence of µ points out that the additional burden

unrealized capital gains represent diminishes the one-period ahead payoffs. In turn, according to

equation (34), the optimal realization of capital fraction π̄t depends on two terms: positively on the

shadow price of unrealized gains µt indicating that the more costly non-realizing gains is the more

agents realize them; and on the tax level τK . If ξ < 0, a higher τK lowers the optimal realization,
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expressing the lock-in effect. From this equation is clear that ξ is the tax elasticity of realization

∂π̄t
∂τ

τ

π̄t
= µtξ(τ)

ξ−1 τ

µtτ ξ
= ξ (36)

which is a structural parameter of the model that can be directly estimated from the data. Fi-

nally, equation (35) is a first-order stochastic difference equation determining the shadow price of

unrealized capital gains. Shifting it one-period ahead:

µt+1 = τ1+ξEP
t+1

[
δµt+2

(
1− ln(µt+2τ

ξ)
)]

= τ1+ξMt+1 (37)

Then, operating on the Euler Equation (33)

Pt = δ(1− τD)EP
t

[Dt+1

Dt

]
Dt + δEP

t

[Pt+1

Pt
(1− τ1+ξMt+1)

]
Pt + δτ1+ξPtEP

t

[
Mt+1

]
(38)

Let mt ≡ EP
t

[
Mt+1

]
. Using the subjective model of prices,

EP
t

[Pt+1

Pt
Mt+1

]
= EP

t

[
(ρ̄βt + ut + ϑt+1 + εPt+1)Mt+1

]
≈ ρ̄βtmt (39)

under the assumption that Cov(Mt+1, xt) ≈ 0 for xt = (ut, ϑt+1, ε
P
t+1) where ut is the Kalman

prediction error. With that approximation, the PD ratio with endogenous capital gains realization

satisfies
Pt

Dt
=

δβ̄t
D

1− (1− τ1+ξmt)δρ̄βt − δτ1+ξmt
(40)

This formula embeds the one under exogenous realization (20) for mt = π and ξ = 0. Consider

mt as given for a moment. In this case, the formula says that the lock-in effect dominates when

ξ < −1, that is

ξ ≶ −1 ⇒ ∂Pt/Dt

∂τ
≷ 0 (41)

However, for equation (40) to be an equilibrium equation, mt must be characterized. Equation (35)

does not have an analytical solution but can be computed numerically.20 Since mt is a function of

the state variables, including Pt/Dt, now there is no closed form for equilibrium prices and the tax

effects on PD volatility must be explored via simulations.

Figure 1 plots the propagation of a one-off dividend shock via capital gains beliefs under Learn-

20The algorithm to do so combines the Parameterized Expectations Algorithm with numerical integration. See
Appendix F.
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Figure 1: Shock propagation at different tax levels with both the capitalization and the lock-in
effect. The graph illustrates the dynamics of subjective capital gains expectations (β) when shocked by a
one-off dividend shock. The blue (red) line uses τ = 0.1(= 0.4). The LHS (RHS) graph uses ξ = −0.5
(ξ = −1.2).

ing. Note that the response of a capital gains beliefs to a fundamental shock under RE would

be none. Hence, the graphs shows that emergence of excess volatility from Learning and how the

tax level regulates it. Two cases are considered. When ξ > −1, labeled ”capitalization”, lower

taxes amplify the propagation of a fundamental shock. In this case, the logic of Proposition 2.2.

goes through. Nonetheless, if ξ < −1, the lock-in effect dominates and lower taxes dampens the

propagation, stabilizing beliefs and prices. Altogether, the model is able to deliver the stabilizing

logic outlined before as well as the destabilizing effect from the lock-in effect as emphasized by

Stiglitz (1983) depending on the value of ξ.21

3.- An application to the US Stock Market

This section uses the theory to link tax cuts to the proliferation of fluctuations in the US stock

market since the 1980s. The emergence of large booms and busts, such as the Dotcom bubble,

in a macroeconomic context characterized by the Great Moderation is a troubling observation

for many macrofinance models. Following lower consumption growth volatility, models based on

macroeconomic fundamentals would predict more stable prices due to a less volatile stochastic

discount factor (e.g., Campbell and Cochrane (1999)). Besides, theories that explicitly detach

prices from fundamentals, as some models of learning, would predict lower belief fluctuations and

21When numerically computing mt, it turns out that the influence of Pt/Dt on it is small. Thus, the intuition of
the dominance of the lock-in when ξ < −1 appeared in expression (41) is approximately correct.
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then more stable prices driven by smaller forecast errors (e.g., Adam et al. (2016)). Even models

that link lower macroeconomic risk with higher demand for risky assets can explain part of the

stock prices’ run-up but not much of their larger swings (e.g., Lettau et al. (2008)).

In this section, I argue that capital gains tax cuts fed the larger fluctuations, partly counter-

acting the stabilizing force coming from the macroeconomy. First, in Section 3.1., I documented a

list of asset pricing facts that highlight significant changes after the 1980s. Section 3.2. sets up a

quantitative model that extends the one presented in Section 2, introduces a novel application of

the Parameterized Expectations Algorithm to solve it and discusses the parameterization, which

includes including a structural estimation using the Simulated Method of Moments. Section 3.3.

presents the estimation results, a decomposition of different channels in the model, and an estima-

tion of the average effect of tax cuts. Section 3.4. explores the implications of the model for the

informational efficiency of the stock market. Finally, Section 3.5. discusses the ability of the model

to produce a high enough equity premium.

3.1.- Facts

This section documents asset pricing facts using US data from 1946 to 2018. Observations are split

into two halves of 36 years each for two reasons: i) to highlight relevant changes that have occurred

in recent decades; ii) to measure changes in volatility more reliably, since fluctuations in valuation

ratios are large and persistent, making difficult to measure volatility changes at short horizons. I

report a list of standard asset pricing statistics involving volatility, predictability, valuations and

the equity premium. Additionally, I include statistics reflecting investors’ expectations. The evi-

dence is summarized in the following five facts, which are collected in Table 1.

Fact 1: Lack of a Great Moderation in the stock market.22 The fluctuations of the PD

ratio, captured by its second moment, increased substantially after the 1980s. The Campbell and

Shiller (1988)’s ”dynamic accounting equation” has become a classical framework to understand

the most proximate drivers of this variance. The equation reads as

V(lnPt/Dt) ≈ Cov
(
lnPt/Dt,

∞∑
j=1

ρ̂j−1∆lnDt+j︸ ︷︷ ︸
≡d̄t

)
− Cov

(
lnPt/Dt,

∞∑
j=1

ρ̂j−1lnRt+j︸ ︷︷ ︸
≡r̄t

)
(42)

22In the paper, I focus on the unconditional variance. However, an increase in volatility is also observed for
conditional variance. See Appendix H.
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where ρ̂ = PD/(1 + PD), PD is the mean PD ratio in the sample and Rt+1 = Pt+1+Dt+1

Pt
is the

gross stock return. The approximate accounting relationship points out that variations in the PD

ratio must be associated with fluctuations in either future dividend growth or future returns.

The results of this decomposition, computed using a VAR projection as proposed by Campbell

and Shiller (1988), are shown in the first panel of Table 1. The figures for the 1946-1982 subsample

point out two results widely shared by the literature (see, for instance, Cochrane (2009)). First,

variations in the PD ratio are only weakly related to future dividend dynamics (-10%); instead,

they are mostly associated with variations in returns. Second, the association between prices and

future dividend growth is negative. The two results are puzzling for any theory that emphasizes

future dividends as the main force driving current stock prices.

However, for the 1982-2018 subperiod, the story is substantially different. Dividend growth

accounts for a larger share of the PD variance (17%) and the correlation with prices becomes

positive, more aligned with standard theories. Put differently, returns and dividend growth moved

together before the 1980s but decoupled afterward. This is quantitatively important: the reversal

accounts for 47% of the increase in the variance of the PD ratio. The other half is related to the

larger covariance between prices and future returns.

Additionally, the variance of stock returns remained largely stable during this period. This

absence of a decrease in stock market volatility stands in sharp opposition to the broader economic

trend. Table 1 also includes the standard deviations of both dividend and consumption growth

rates, which experienced a 20% and 50% reduction, respectively.

Fact 2: A fall in excess return predictability. Price-Dividend volatility is closely related

to stock return predictability. As it is well known, the covariance between the PD ratio and the

discounted sum of future returns, which appears in the right-hand side of expression 42, would also

be the denominator of the coefficient of an OLS projection of the log PD ratio into the accumulated

discounted returns (see, for instance, Cochrane (2009)). And, since accumulated excess returns are

mostly driven by accumulated stock returns, that covariance should be similar to the denominator

of a predictability regression like

xrt,t+h = c0 + ch1
Pt

Dt
+ uxrt (43)

with

xrt,t+h =
h∏

j=1

Rt+j −
h∏

j=1

Rb
t+j (44)
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Figure 2: No signs of a Great Moderation in the stock market. The graph plots the evolution of
the PD ratio and real aggregate consumption growth in the 1946:I-2018:IV period. The continuous lines plot
the mean of each subperiod 1946:I-1982:II and 1982:III - 2018:IV. The dotted bands show ± one standard
deviation.

where Rb
t is the gross real return on 90 days T-bills. I run the regression for h = 4, 12, 20 quarters

for the two sub-samples. The result is always the same: a significant reduction in the magnitude of

the coefficient ch1 . In Table 1, I include the results for h = 20. At this horizon, the coefficient drops

from -0.17 pre-1980s to just -0.04 post-1980s, that is, a decline of more than 75% in predictability

(the drop in predictability is close to 70% for h = 12 and 65% for h = 4).

Cochrane (2009) showed that the high predictability at longer horizons is related to the per-

sistence of the PD ratio, so perhaps lower predictability comes from lower persistence. As shown

in Table 1, this is not the case; persistence is statistically the same across the two subsamples.

Instead, the Campbell-Shiller’s decomposition suggests that the predictability drop is related to

the fact that the increase in V(lnPt/Dt) has been greater than the increase in Cov(lnPt/Dt, r̄t) due

to the substantial rise in Cov(lnPt/Dt, d̄t).

Fact 3: A surge in capital gains. The mean PD ratio almost doubled after the 1980s.

This fact has been extensively documented in the literature (e.g., Shiller (2000), McGrattan and

Prescott (2005), Brun and González (2017)) and is illustrated in figure 2. In accounting terms,

Pt+n/Dt+n

Pt/Dt
= exp

{
∆lnPt+n −∆lnDt+n

}
(45)
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Hence, the accounting reason for a higher PD ratio is that the increase in price growth exceeds the

dividend growth. Indeed, table 1 shows that the average price growth was 1.48% post-1982 from

0.48% pre-1982 while dividends grew only 0.75% post- from 0.49% pre-1982.

Fact 4: A stable equity premium. The historical average of the difference between the real

stock return and the real 90 days T-Bill was statistically the same in both samples. The risk-free

rate followed an upward trajectory from low to high rates since the 1950s to the early 1980s and

a reverse downward path from high to low rates afterward. Then, sample averages are very much

the same. The same is true for stock returns.

Fact 5: A higher sensitivity of prices to beliefs and shocks. A key insight of the model

was that low taxes would increase volatility by increasing the sensitivity of prices to beliefs. This

sensitivity can be measured using survey data. Since finding investors’ survey data going back to

1946 is problematic, I follow Adam et al. (2017) to extend the UBS Gallup survey for the 1946-2018

period using the following adapting algorithm:

lnEs
t

(Pt+1

Pt

)
= (1− g)lnEs

t−1

( Pt

Pt−1

)
+ g ln

Pt−1

Pt−2
(46)

where Es stands for survey expectations, Pt is the real SP500 price, g is estimated using non-linear

least squares to minimize the mean square distance between the survey and the algorithm-implied

data points. The point estimate is g = 0.0266 and the initial condition is set equal to zero growth.

This equation, which is consistent with a Kalman filter, turns out to replicate the survey data points

very well, exhibiting a correlation of 0.85 in the period that both series overlap. The approach of

obtaining survey-like data by projecting the existing surveys on other variables has also been used

in Nagel and Xu (2022) . Besides, a constant gain scheme has proven to be a parsimonious and

reasonable way of modeling other expectations series (see, for instance, Malmendier and Nagel

(2016)).

With this long series of survey-like expectations, I run the following regression for each subperiod

PDt = α+ ζlnEs
t

(Pt+1

Pt

)
+ εst (47)

As pointed out by Adam et al. (2017) and illustrated in figure 3, ζ went up substantially after the

1980s. Thus, although the correlation between the PD ratio and beliefs was virtually the same

across both periods, their relationship became much steeper.

Additionally, the model emphasized that the sensitivity of the PD ratio to price growth shocks

23



0.005 0.000 0.005 0.010 0.015 0.020
Capital gains expectations

10

20

30

40

50

60

70

80

90

Pr
ice

-D
iv

id
en

d 
ra

tio

Pre-1982
Post-1982

Figure 3: The PD ratio became more reactive to capital gains survey-like expectations. The graph
plots the quarterly PD ratio of the SP500 against the log real mean price growth expectations implied by an
extended version of the UBS Gallup survey. The periods are 1946:I–1982:II and 1982:III–2018:IV.

would be more pronounced in environments with lower taxes. A standard way of computing this

sensitivity is by measuring the response of the PD ratio at the horizon h defined as

E(PDt+h|εPt = 1, It)− E(PDt+h|εPt = 0, It) (48)

where εPt is a price growth shock and It is the information set when the shock hits the system. I

use a minimalist VAR with price growth and PD ratio to have a description of the data. As shown

in figure 4, the response is significantly larger in the second subsample. For instance, at the 1-year

horizon, the point estimate for the response is 70% higher in the post-1982 sample.

The previous changes in the stock market have occurred in a period where many paramount

institutional changes were put in place. I highlight here two of the ones more directed to investors’

payoffs.

A decline in personal capital taxes. Taxes on personal investment income (dividends,

capital gains, and interests) decreased substantially over the last decades (McGrattan and Prescott

(2005), Sialm (2009)). A standard measure is the effective average marginal rate, that is, a value-

weighted mean of the marginal tax rates of investors in the various income brackets once adjusted

for the features of the tax code (such as maximum and minimum taxes, partial inclusion of social

security, or phaseouts of the standard deduction).23 The NBER’s TAXSIM program computes these

23These rates are provided by the TAXSIM program of the NBER and can be accessed on his website. Before
1960, τd

t , τ
skg
t and τ lkg

t rates were taken from Sialm (2009). See Appendix A for details.
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Figure 4: Response of the PD ratio to an equivalent shock. The graph plots the response function of
the PD ratio to a price growth shock at a quarterly frequency. Confidence bands at 68% and 95% levels are
shown, coming from a bootstrap procedure with 1000 repetitions.

rates. It does not account, though, for regulatory changes involving pension savings vehicles that

led to a massive change in asset holdings from taxable to nontaxable accounts, effectively reducing

taxes on the aggregate investment income (see McGrattan and Prescott (2005)). To correct for

that, I follow the literature and adjust the NBER rates as follows:

τDt = τdt (1− ηt) (49)

τt = (ϕτ skgt + (1− ϕ)τ lkgt )(1− ηt) (50)

τBt = τ bt (1− ηt) (51)

In the previous expressions, τdt , τ
skg
t , τ lkgt and τ bt are the NBER effective average marginal rates

on dividends, short, long capital gains and interest income, respectively; ϕ is the average weight of

short capital gains on total capital gains; ηt is the nontaxable share. Data sources are in Appendix

A; computation details on the nontaxable share are in Appendix C. As illustrated in figure 5,

taxes exhibited a substantial decline which represented a movement towards a generally lower tax

environment. This overall tax decline was the result of the joint action of statutory tax reforms

along with changes in regulations that drove a movement to nontaxable accounts.24 According

24Important reforms were the reduction of capital gains by Carter in 1978 and Clinton in 1997, partially counter-
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Table 1: Five changes in the US Stock Market: 1946-1982 versus 1982-2018. This table reports
a list of statistics using the data sources described in Appendix A. The variables are in real terms. Growth
rates and returns are annualized. Newey-West standard errors are in parentheses using 9 lags. The residuals
for the response of the PD ratio to a price growth shock are obtained via bootstrapping with 1000 repetitions.

1946-1982 1982-2018

Fact 1: Lack of a Great Moderation

Volatility of the PD ratio Var(lnPt/Dt) 7.15 13.97

(1.35) (3.56)

Comovement PD - dividends Cov(lnPt/Dt, d̄t) -0.81 2.38

(0.20) (0.55)

Comovement PD - returns Cov(lnPt/Dt, r̄t) -7.96 -11.60

(1.54) (3.03)

Stock returns volatility σ(rst ) 7.87 7.41

(0.72) (0.81)

Volatility of dividend growth σ(Dt/Dt−1 − 1) 2.52 1.97

(0.41) (0.35)

Volatility of consumption growth σ(Ct/Ct−1 − 1) 1.00 0.53

(0.15) (0.06)

Fact 2: A fall in excess return predictability

5y Regression coefficient c20 -0.17 -0.04

(0.02) (0.01)

Persistence PD ratio corr(PDt, PDt−1) 0.96 0.98

(0.13) (0.07)

Fact 3: A surge in capital gains

Price-Dividend ratio E(PDt) 25.48 47.09

(1.55) (4.04)

Dividend growth E(Dt/Dt−1 − 1) 0.49 0.75

(0.35) (0.34)

Stock price growth E(Pt/Pt−1 − 1) 0.48 1.84

(0.64) (0.63)

Fact 4: A stable equity premium

Real bond returns E(rbt ) 0.42 0.38

(0.02) (0.03)

Real stock returns E(rst ) 4.73 4.34

(0.76) (0.76)

Fact 5: A higher sensitivity of prices to beliefs and shocks

Correlation of prices and beliefs corr(PDt, lnβt) 0.84 0.84

(0.06) (0.07)

Sensitivity of prices to beliefs ζ 0.84 2.63

(0.08) (0.26)

Response of the PD ratio to a shock E(PDt+4|εPt = 1, It)− E(PDt+4|εPt = 0, It) 0.26 0.44

(0.06) (0.10)

to my estimates and in line with the literature (McGrattan and Prescott (2005), Sialm (2009),

Rosenthal and Austin (2016)), the share of equity income paying taxes dropped from 87% in 1946

to just 30% in 2018.

The rise in stock repurchases. In 1982, the Securities and Exchange Commission’s Rule

acted by Reagan in 1986. When it comes to dividends, Reagan 1982 and Bush 2001 and 2003 represented substantial
tax cuts.
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Figure 5: Capital tax rates during the postwar period. The graph plots the effective average marginal
tax rates on dividends (blue), interest income (yellow), and capital gains (red) as defined by equation (49),(
50), and (51). Annual series 1946-2018. See Appendix A for data sources and Appendix C for details on
the computations.

10B-18 provided a safe harbor for stock repurchases under the Rule´s conditions.25 With this

change, stock buybacks began to grow substantially, as figure 6 illustrates. In fact, they became

the dominant form of corporate payout for the SP500 firms since 1997. As opposed to dividends,

earnings growth volatility did not fall. Hence, there is a possibility that part of the extra price-

dividend volatility simply reflects a fundamental volatility that is channeled through repurchases

rather than dividends.

3.2.- A Quantitative Model

This section extends the model outlined in Section 2.4. to remove certain simplifying assumptions.

It also introduces a new application of the Parameterized Expectations Algorithm to solve it.

Finally, I discuss the parameterization, which involves observable parameters picked from the US

data and a structural estimation of the rest via the Simulated Method of Moments.

The model is extended in five dimensions. First, the assumption of risk neutrality is abandoned.

Instead, investors are allowed to dislike risk in a Constant Relative Risk Aversion (CRRA) sense,

with a parameter γ regulating its level of risk aversion.

Second, an additional source of exogenous income is introduced to avoid an unrealistically too-

high correlation between dividends and consumption at odds with the data. Following Adam et al.

25See this file for a summary.
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Figure 6: Stock repurchases by SP500 firms. The graph plots the quarterly repurchases performed by
all SP500 1983.III-2018.IV in billions of dollars.

(2017), it is assumed agents get a wage endowment Wt each period, following this process:

ln
(
1 +

Wt

Dt

)
= (1− p)ln(1 + w) + pln

(
1 +

Wt−1

Dt−1

)
+ εwt (52)

Dt are aggregate dividends, 1 + w is the average wage-dividend ratio and p ∈ [0, 1) is its

quarterly persistence. The innovations to the log dividends growth (given by equation (8)) and

wage-dividends are jointly distributed as follows

εdt
εwt

 ∼ iiN

(0

0

 ,

σ2D σDW

σDW σ2W

)

Third, taxes are stochastic. In particular, each type of tax follows a unit root process, that is

τ jt = τ jt−1 + ϵτ
j

t (53)

where ϵ
τj
t ∼ iiN (0, s2τj ).

26 Tax shocks are assumed to be orthogonal to dividend and consumption

shocks.

Fourth, risk-free bonds with a gross rate return Rb
t are introduced such that investors can choose

between stock and bonds to store value. Fifth, the informational assumptions about dividends are

relaxed such that investors are now uncertain about the dividend process. In their mind, the process

26When the observed tax time series are fit into an AR(1) model, the estimated coefficients are not statistically
different from 0 (intercept) and 1 (slope). Thus, the unit root process constitutes a realistic representation of the tax
process. Moreover, their residuals behave as Gaussian white noise. Normality has been tested via the Shapiro-Wilk
Normality test.
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looks like

ln
Dt

Dt−1
= lnd̃t + εdt (54)

lnd̃t = lnd̃t−1 + ν d̃t (55)

where d̃t is unobserved and innovations are Normal i.i.d. with constant variances σ2Dand σ2
d̃

respectively. As with prices, they use a Kalman algorithm to filter out the noise and the posterior

expectations with period t information are given by lnd̃t|ωt ∼ N (lnβdt , σ
2) with

lnβdt = lnβdt−1 + gd
(
ln

Dt

Dt−1
− lnβdt−1

)
(56)

It follows that

EP
t

[Dt+1

Dt

]
= βdt exp{σ2D/2} (57)

Finally, buybacks are included in the form of negative supply shocks

S̄t = 1− εst (58)

where S̄t is the aggregate stock supply available in the market.

A recursive solution via the Parameterized Expectations Algorithm. A recursive so-

lution boils down to a time-invariant stock demand function St = S(Xt), where Xt is the vector of

state variables. The main difficulty in deriving such an invariant function is that there are 3 opti-

mality conditions -for stocks, bonds, and unrealized capital gains- that involve unknown subjective

conditional expectations. Let E(Xt) be the vector of conditional expectations. I approximate it

using the Parameterized Expectations Algorithm (PEA), originally proposed by Marcet (1988),

which replaces E(Xt) with some parametric functions ψ(Xt;χ). Building on homotopy, the main

idea is to approximate the consumption policy function using a function rooted in economic theory.

In particular, I conjecture that the consumption policy is linear in wealth, with the propensity to

consume depending on after-tax return expectations.27 A stock demand function Sd
t can be then

derived from the budget constraint and equilibrium prices can be obtained using the equity market

clearing condition:

Sd
t = Sd

( Pt

Dt
, ·
)
= S̄t (59)

where S̄ is the aggregate supply in the market. Due to the handy policy function, this equation

27See, for instance, Hakansson (1970).
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can be analytically solved for prices such that

Pt

Dt
=

χ1δ(1− τDt )βdt exp{σ2d/2}
S̄t − χ1δ(1− ψ2(Xt;χ2)τ

1+ξ
t )βt

(
1 +

Wt

Dt

)
(60)

where χ1 is a parameter of the consumption approximating function and ψ2(Xt;χ2) is approxi-

mating the expected value of the Lagrange multiplier in the unrealized capital gains accumulation

equation.28 Despite containing very few parameters, both approximating functions perform well,

with errors in terms of consumption equivalent to $1 out of $1,000 and $1 out of $1,000,000, respec-

tively. See Appendix D for all the details about the PEA implementation and accuracy measures.

Parameterization. The parameterization strategy is twofold. A subset of parameters related

to income processes, the vector θ̃ = {σD, σW , σWD, p}, is picked directly from US data, distinguish-

ing between the two subsamples. Parameter values are specified in panel a) of Table 2 and data

sources are reported in Appendix A.

The remaining parameters are collected in the vector θ = {δ, g, γ, ξ, w, PDL, PDU , B0}, where

PDL and PDU are parameters of the projection facility.29 This vector is estimated via an extension

of the Simulated Method of Moments, following Adam et al. (2016). To test the power of taxes to

explain the various observed changes, estimated parameters are kept fixed throughout the sample.

Hence, a total of n=8 parameters are estimated to match to a subset of M moments from those

reported in table 1. The vector θ is chosen to minimize the distance between the model S̃(θ) and

the data Ŝ statistics, that is,

θ̂ = argmin
θ∈Θ

[
Ŝ − S̃(θ)

]′
Σ̂−1
S

[
Ŝ − S̃(θ)

]
(61)

where Ŝ an S̃(θ) are M × 1 vectors and Σ̂S is a M ×M weighting matrix, which determines the

relative importance of each statistic deviation from its target. A diagonal weighting matrix is

used, whose diagonal is composed of the inverse of the estimated variances of the data statistics.

The model is fed with the observed dividend growth, tax, and buybacks shocks; wage shocks are

simulated through a Monte Carlo experiment with 1000 realizations. I formally test the hypothesis

that any of the individual model statistics differs from its empirical counterpart using t-statistics.

28As it is common in similar models, there is a discontinuity in the formula. In this case, the literature often
resorts to a projection facility that restricts beliefs to ensure non-negative and non-explosive prices (see, for instance,
Adam et al. (2016)). Appendix D contains the details.

29The projection facility starts to dampen belief coefficients that imply a PD ratio equal to PDL and sets an
effective upper bound at PDU . See Appendix D.
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Table 2: Parameters. Panel a) table reports the values of the parameters coming from US data. Panel b)
reports the estimated parameters from the Simulated Method of Moments procedure described in the text.

a) Parameters from the data 1946-1982 1982-2018

Dividend growth standard deviation σD 0.0252 0.0197

Wage-dividend ratio standard deviation σW 0.0261 0.0196

Covariance (wage-dividend, dividend growth) σWD -0.0006 -0.0004

Persistence wage-dividend ratio p 0.91 0.99

b) Estimated parameters from SMM

Discount factor δ 1.00

Kalman gain g 0.0260

Risk aversion γ 1.24

Tax elasticity of realization ξ -0.30

Average wage-dividend ratio w 5.83

Starting value of the projection facility PDL 731.20

Upper bound of the projection facility PDU 715.82

Initial buybacks shocks B0 0.0023

3.3.- Estimation results

In this section, the estimation results are reported. I split the list of statistics in the Table 1 in two

groups. The first group, M0, is included in the SMM procedure; the excluded statistics are used as

out-of-estimation tests of the model. The following statistics are included in M0 :

M0 =
{
E(PDt),E(Pt/Pt−1),E(rst ),Var(lnPt/Dt),Cov(lnPt/Dt, d̄t),Cov(lnPt/Dt, r̄t), σ(r

s
t ), ζ

}
(62)

It includes key statistics related to the average price level, volatility and the sensitivity of prices to

beliefs.30 Since all of them are included in each sample, that makes a total of 16 statistics to be

matched with 7 parameters.

The estimated parameter vector θ̂ is reported in panel b) of table 2. In the analysis, δ is

constrained to fall within the interval of 0 and 1, with the estimation indicating that it approaches

the upper limit of this range. The Kalman gain g is calculated to be 0.0260. This figure not

only aligns very closely with the 0.2660 estimate derived from survey data but also concurs with

various other estimations reported in the literature, such as those presented by Adam et al. (2017).

Furthermore, the estimated level of risk aversion stands at 1.24, a figure that is considered to be

30Expanding the set of statistics does not change the results much. The only difference is the inclusion of the
risk-free rate, which pushes the model towards a very low risk-aversion parameter and a too high volatility of beliefs
to compensate for the former.
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within the bounds of what is generally deemed reasonable. Perhaps the most critical parameter

determined in our study is the tax elasticity of realization, ξ = −0.3. This parameter suggests

that although the lock-in effect is observable, it is overshadowed by the tendency of lower taxes to

increase market volatility. The identification is driven by the constraints imposed by the variance

decomposition. Thus, the higher ξ, the higher is Var(lnPt/Dt); however, it also generates an

excessive increase in Cov(lnPt/Dt, r̄t) (and a strong increase in σ(rst ) that is completely at odds

with the data). Notably, ξ = −0.3 is within the interval provided by Zidar (2019), who leveraged

state-level variations for his calculations.

Table 3 presents the baseline estimation results, providing a comprehensive overview of the

model’s performance. A remarkable observation is the model’s ability to pass almost all individual

t-tests, with t-stats generally below 2, indicating a robust fit to the data. This analysis reveals a

significant increase in the mean Price-to-Dividend (PD) ratio, primarily driven by an increase in

capital gains. Both the mean level of stock returns and its virtual constancy are well replicated.

Furthermore, the model captures an important increase in the variance of the PD ratio as well

as the variance decomposition. This includes a transition from negative to positive correlation

between the PD ratio and d̄t, as well as a more pronounced negative covariance between the PD

ratio and r̄t. Additionally, the model successfully approximates the level of stock return volatility,

where, despite a mild increase, it remains within the confidence bands. Another significant finding

is the marked rise in ζ, the sensitivity of the PD ratio to beliefs, corroborating the theoretical

mechanisms discussed in Section 2.

Beyond the statistics incorporated into the SMM procedure, the model exhibits several note-

worthy features. It predicts a considerable reduction in the predictability of 5-year excess stock

returns, maintaining a high and relatively stable serial correlation of the PD ratio. Additionally,

capital gains expectations are strongly pro-cyclical, consistent with survey data. Moreover, the

model demonstrates an enhanced response of the PD ratio to price growth shocks, indicating a

movement in the intended direction, albeit with an excessive magnitude. These findings under-

score the model’s quantitative strengths, which not only adhere to the observed dynamics within

financial markets but also perfectly replicate the observed decline in macroeconomic volatility, as

evidenced by the standard deviations of dividends and consumption growth.

Decomposition by channels. To gain deeper insights into the specific contributions of each

channel within our model, Table 4 provides statistics derived from scenarios where individual

channels are selectively deactivated. Due to spatial constraints, this table is focused on presenting

only the mean Price-Dividend (PD) ratio and the breakdown of variance, which are the most critical
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Table 3: Baseline estimation results. This table reports theM statistics included in the SMM estimation.
The first four columns report the observed statistics for the US data. The next four columns report model-
implied statistics and their t-statistics using the Table 2’s parameters. The rates of growth, returns, variances
and covariances have been multiplied by 100.

US data Baseline Model

1946-1982 1982-2018 1946-1982 1982-2018

Ŝj Ŝj S̃j(θ̂) t-stat S̃j(θ̂) t-stat

Included in SMM estimation

E(PDt) 25.48 47.09 27.31 -1.18 39.73 1.82

E(Pt/Pt−1 − 1) 0.48 1.84 0.82 -0.53 1.74 0.16

E(rst ) 4.73 4.34 4.78 -0.07 4.66 -0.42

Var(lnPt/Dt) 7.15 13.98 6.48 0.49 11.68 0.64

Cov(lnPt/Dt, d̄t) -0.81 2.38 -0.30 -2.62 2.87 -0.88

Cov(lnPt/Dt, r̄t) -7.96 -11.60 -6.76 -0.78 -8.83 -0.92

σ(rst ) 7.87 7.41 7.16 0.98 8.59 -1.45

ζ 0.84 2.63 0.87 -0.41 2.20 1.60

Non-included in SMM estimation

c20 -0.17 -0.04 -0.13 -1.91 -0.03 -2.10

corr(PDt, PDt−1) 0.96 0.98 0.96 -0.59 0.94 -0.16

corr(PDt, βt) 0.84 0.84 0.88 -0.81 0.87 -0.44

E(PDt+4|εPt = 1, It)− E(PDt+4|εPt = 0, It) 0.26 0.44 0.64 -6.40 1.36 -9.15

E(Dt/Dt−1 − 1) 0.49 0.75 0.49 0.00 0.75 0.00

σ(Dt/Dt−1 − 1) 2.52 1.97 2.52 0.00 1.97 0.00

σ(Ct/Ct−1 − 1) 1.00 0.53 1.00 0.00 0.53 0.00

metrics for our analysis.

In the absence of a lock-in effect (i.e., ξ = 0 and mt = π), lower taxes boost optimism without

increasing the realization of gains so tax cuts unequivocally encourage higher and more fluctuating

prices.31 Echoing Stiglitz (1983), the lock-in effect generates lower volatility from tax cuts. Simi-

larly, without transfers (Tt = 0), investors’ income fluctuates more due to the taxes paid on realized

capital gains.This extra volatility gets transmitted into greater price fluctuations. On the contrary,

the absence of buybacks (εst = 0, ∀t) leads to fewer shocks and lower volatility. Importantly, buy-

backs appear to be critical to changing Cov(lnPt/Dt, d̄t) from negative to positive. Furthermore,

ignoring the Great Moderation by maintaining the volatility of aggregate consumption growth at

its 1946–1982 level throughout the second subsample leads to higher volatility, highlighting the

stabilizing role of the Great Moderation.

31A calibration of π is implemented to align E(PDt) in the initial subsample to the baseline scenario, ensuring
comparability.
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A usual benchmark is Rational Expectations. In this case, investors’ expectations about capital

gains are time-varying as follows from their knowledge about dividend growth being an AR(1)

process, but the expectations-price spiral is absent. The statistics reported in table 4 show that

even without Learning, the model produces a substantial increase in both the mean and the vari-

ance of the PD ratio. It is worth mentioning, though, that the RE version performs poorly in

different dimensions. The biggest failure comes from a too low PD ratio persistence, 0.17 and 0.32

respectively, as their fluctuations are driven by the dividend growth rate whose persistence is low.

Table xx in appendix X reports all the statistics for the model with RE. Thus, learning from prices

appears as pivotal for generating a change in volatility along with a highly persistent PD ratio.

Table 4: Model statistics in different versions of the model. This table reports selected statistics for
different versions of the model. The ”full-fledged model” reproduces the results in Table 3. All versions use
table 2’s parameters. Variances and covariances have been multiplied by 100.

Full-fledged model No Lock-in Effect No transfers

1946-1982 1982-2018 1946-1982 1982-2018 1946-1982 1982-2018

E(PDt) 27.31 39.73 27.57 43.26 26.13 39.66

Var(lnPt/Dt) 6.48 11.68 5.86 14.85 5.95 12.40

Cov(lnPt/Dt, d̄t) -0.30 2.87 -0.04 3.17 -0.29 1.05

Cov(lnPt/Dt, r̄t) -6.76 -8.83 -5.87 -11.51 -6.23 -11.14

No buybacks No learning (RE) No Great Moderation

1946-1982 1982-2018 1946-1982 1982-2018 1946-1982 1982-2018

E(PDt) 27.37 37.40 27.09 38.96 27.40 40.20

Var(lnPt/Dt) 7.23 9.19 8.15 12.43 6.43 12.01

Cov(lnPt/Dt, d̄t) -0.61 -1.07 0.42 0.88 -0.29 3.10

Cov(lnPt/Dt, r̄t) -7.84 -10.24 -7.73 -11.56 -6.71 -8.94

Average Effect of Capital Gains Tax Cuts. A natural question is: How much of the

increase in volatility is imputable to the reduction in τ? This effect can be estimated by running the

following counterfactual: fix τt at a particular level τ̄ for all t in 1982-2018; compute the difference

between the baseline model statistic S̃j(θ̂)
post and the statistic for the constant tax S̃j(θ̂)

post|τt = τ̄ .

This difference is an average treatment effect that shows what would have happened without tax

cuts after 1982. It is then divided by the increase in the statistic observed using US data, Ŝpost
j −Ŝpre

j .

This delivers a relative average treatment effect: the increase in the statistic due to tax cuts relative

to the observed increase. Thus,

RATEj =
S̃j(θ̂)

post − (S̃j(θ̂)
post|τt = τ̄)

Ŝpost
j − Ŝpre

j

× 100 (63)
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I selected τ̄ = 0.15 as the baseline tax rate, representing the mean tax rate observed in the

initial subsample and the highest level recorded between 1982 and 2018. This choice serves as a

reasonable benchmark for a scenario without tax cuts in historical terms.

Table 5 reports the estimation for the main statistics and different versions of the model. Tax

cuts explain approximately 40% of the observed increase in the variance of the PD ratio, a result

robust to the exclusion of various model channels. Thus, even after excluding stock buybacks,

transfers, or accounting for the absence of the Great Moderation, the proportion attributed to

tax cuts remains relatively stable, ranging from 36.49% to 40.94%. However, the presence of the

lock-in effect significantly alters the impact, accounting for 85% of the total increase in volatility.

Therefore, considering the lock-in effect is essential to accurately evaluate the overall effect of tax

cuts. Notably, when agents hold Rational Expectations, the impact of tax cuts on volatility is

significant, 26.54%, although a bit lower than with Learning. That implies that Learning accounts

for about 1/3 of the tax cut-induced increase of volatility.

Tax cuts primarily affect volatility by influencing the covariance between the PD ratio and

future returns. In the full-fledged model, tax cuts account for approximately 70% of this increase,

whereas their influence on the covariance between the PD ratio and future dividend growth remains

modest, below 10%. The effect of tax cuts on the mean level of the PD ratio is also relatively modest,

hovering slightly above 10% across various channels.

Table 5: Relative Average Effect of Capital Gains Tax Cuts (in %). This table reports the relative
average effect of tax cuts as defined in formula 68 for τ̄ = 0.15 for a selected subsample of statistics. The
columns are different versions of the model. All the versions are parameterized according to Table 2.

Full-fledged model No Lock-in Effect No transfers

E(PDt) 13.02 27.63 15.37

Var(lnPt/Dt) 39.83 84.98 56.62

Cov(lnPt/Dt, d̄t) 8.20 14.08 -13.54

Cov(lnPt/Dt, r̄t) 70.18 144.14 116.71

No buybacks No learning (RE) No Great Moderation

E(PDt) 12.26 9.65 13.36

Var(lnPt/Dt) 36.49 26.54 40.94

Cov(lnPt/Dt, d̄t) -24.14 1.30 22.22

Cov(lnPt/Dt, r̄t) 90.77 48.69 62.09

Alternative assumptions about taxes. How robust are these effects to changes in assump-

tions about tax news? So far, the assumption is that tax changes are unexpected. There exists,

however, some evidence that markets show substantial ability to forecast taxes (see, for instance,
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Kueng (2014)). To address this concern, I try two different schemes. First, I assume perfect

foresight of near-term taxes (which are indeed the only relevant, given the pricing function is un-

known), such that EP
t (τt+1) = τt+1. Additionally, I conjecture that investors are uncertain about

the stochastic process followed by taxes and then they learn about it. Mimicking the price and

dividends models they use, investors think of taxes using an unobserved component model which

implies

τt = qt + εt (64)

qt = qt−1 + εqt (65)

where τ = [τ, τD, τB]′, q is unobserved and innovations are i.i.d. Normally distributed with zero

mean and constant variance. As before, the posterior distribution of the unobserved component is

given by qt|ωt ∼ N (τ̃t,Ω
τ ), with Ωτ being the steady state Kalman filter uncertainty. Then,

EP
t

[
τt+1

]
= τ̃t (66)

and

τ̃t = τ̃t−1 + gτ (τt − τ̃t−1) (67)

The first and second columns of table 6 report the relative average treatment effect of capital

gains tax cuts for this alternative tax expectations specifications.32 The bottom line is that results

are very similar to the baseline case. For tax foresight, tax cuts generate an increase in the variance

of 38%, very close to the 40% of the baseline model. With learning about taxes, the effect is even

stronger, reaching almost 50%. This larger increase occurs despite the tax expectations time series

under learning is smoother, displaying less tax changes. While the original series exhibits a strong

tax cut in the late 1970s that is largely reversed in the early 1980s, the smoother series displays a

clearer downward trend since the 1970s which unambiguously leads to higher volatility. Whether

agents have perfect foresight about the experiment or learn about it makes very little difference.

Finally, the fact that tax-induced volatility goes mostly through a larger covariance between prices

and returns also holds for both cases.

A key parameter is the tax elasticity of realization ξ. The estimated value is in the lower bound

of the estimation in Zidar (2019). How would results change with a more negative value? The effect

of CGT tax cuts on the mean PD ratio is barely changed, staying around 10%. Unsurprisingly, the

effect of tax cuts on volatility is a third lower, accounting for 27% rather than 40% of the observed

32gτ is set equal to g. Alternative gτ barely affects the results.
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increase.

The Average Effect of Capital Tax Cuts. While the paper has emphasized the role

of capital gains taxes, dividend tax cuts were even more important. McGrattan and Prescott

(2005) argued that these cuts would be behind an important part of the rise in the stock market

capitalization to GDP, a statistic with a high comovement with the PD ratio. Are dividend tax cuts

also behind the increase in the PD ratio variance? To address this question, I compute the relative

average treatment effect of tax cuts. Following the above, procedure, I compute S̃j(θ̂)
post|τDt = τ̄D

with τ̄D = 0.26, which is max({τDt }2018.IV1982.III).

The third column of the table 6 reports the results for the selected statistics. Consistent with

McGrattan and Prescott (2005), dividend tax cuts are behind 20% of the increase in the mean PD

ratio. Thus, they seem to be much more important than capital gains tax to explain the run-up

of the stock market. However, their contribution to the increase in the variance is much more

modest, below 10%. Furthermore, they influence the variance only through Cov(lnPt/Dt, d̄t). In

other words, dividend and capital gains taxes are quite complementary in their effects on asset

prices.

Additionally, so far I have considered the effect of tax cuts one at a time, but how would the

stock market have behaved without both dividends and capital gains tax cuts altogether?33 I

answer this question by computing (S̃j(θ̂)
post|τt = τ̄ , τDt = τ̄D). The first column of the table 6’s

bottom panel reports the effect for selected statistics. It turns out that the joint tax cuts accounted

for 31% of the increase in the mean level of the stock market and 47% of the greater variance. This

is approximately equal to the sum of the effects of each tax cut, that is

S̃j(θ̂)
post−(S̃j(θ̂)

post|τt = τ̄ , τDt = τ̄D) ≈
[
S̃j(θ̂)

post−(S̃j(θ̂)
post|τt = τ̄)

]
+
[
S̃j(θ̂)

post−(S̃j(θ̂)
post|τDt = τ̄D)

]
(68)

The Average Effect of Stock Buybacks. The effects of buybacks on both the mean and

the variance of the PD ratio are very similar to those of CGT cuts, explaining 10.86% and 34.91%,

respectively. The main difference is that while tax cuts mostly impact Cov(lnPt/Dt, r̄t), buybacks

impact Cov(lnPt/Dt, d̄t). Put differently, both tax cuts and stock buybacks seem to increase the

variance of the PD ratio, but through different channels.

33I have not included the effects of τB because they are very small, as they only affect the risk-free rate.

37



Table 6: Additional Relative Average Treatment Effects (in %). This table reports the relative
average treatment effect when agents have perfect foresight about CGT tax cuts, when agents learn about
taxes and when the tax elasticity of realization is lower. Besides, it reports the effect of other variables:
dividend tax cuts, joint capital tax cuts and buybacks. All the versions are parameterized according to Table
2.

τ foresight Tax Learning ξ = −0.4

E(PDt) 12.67 11.02 9.09

Var(lnPt/Dt) 37.83 49.92 26.62

Cov(lnPt/Dt, d̄t) 9.74 20.32 7.23

Cov(lnPt/Dt, r̄t) 66.79 77.92 45.77

τD τ and τD Buybacks

E(PDt) 19.15 30.86 10.86

Var(lnPt/Dt) 8.99 46.54 34.91

Cov(lnPt/Dt, d̄t) 20.72 25.50 122.51

Cov(lnPt/Dt, r̄t) -2.80 68.20 -40.13

3.4.- Informational Efficiency

In line with the model’s ability to mirror the variance decomposition of the PD ratio, it also

effectively captures the observed reduction in the predictability of excess stock returns. However,

the interpretation of this decline as an increase in efficiency is generally problematic by the Joint

Hypothesis Problem (Fama (1970)). Instead, given the good quantitative performance of the model,

this section studies informational efficiency within the model.

In the model with Learning, prices are not efficient for two reasons. First, payoffs are discounted

using a subjective factor that differs from the equilibrium discount factor (i.e., the marginal rate of

substitution in the real economy) (Adam et al. (2017)). Second, the expected payoffs themselves

are produced from subjective statistical models without general equilibrium considerations. In

other words, investors do not internalize the effect of their expectations on market prices, giving

rise to non-fundamental volatility. For the opposite reasons, given the model, market efficiency is

equivalent to Rational Expectations.

Hence, efficiency can be tested by tracking the deviations between Learning and Rational Ex-

pectations. Put differently, I compare a model with good quantitative properties but inefficient

prices with the efficient version of the same model. In particular, mimicking a statistic used in

portfolio analysis, let the Tracking Error be

σE =

√
V
(PL

t

Dt
− PRE

t

Dt

)
(69)
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It expresses how closely the PD ratio in the world with Learning follows that benchmark PD

ratio, using the standard deviation of their distance as the measure.

Table 7 presents the tracking error metrics, highlighting a notable increase in the full-fledged

model, which sees an approximate 60% escalation. This significant uptick indicates a marked

deviation of market prices from the theoretical efficient benchmark, suggesting a decrease in market

efficiency. Notably, this decrease in efficiency is not attributable to any specific mechanism within

the model. For instance, the absence of the lock-in effect or the cessation of stock repurchases tends

to exacerbate this error even further.

Furthermore, the table delineates the impact of capital gains tax reductions on the tracking

error. It reveals that tax cuts are responsible for 60% of the observed decline in informational

efficiency, a proportion that remains robust across various model specifications. This indicates that

the reduction in efficiency tied to tax cuts is a consistent outcome, unaffected by the deactivation of

different model channels. This underscores the critical role of capital gains tax policy in influencing

market efficiency.

Table 7: Informational Efficiency Test. This table reports two statistics: i) the tracking error σE as
defined by equation (69); ii) the Relative Average Treatment Effect (RATE) of capital gains tax cuts on σE
for τ̄ = 0.15. All versions of the model use table 2’s parameters.

Full-fledged model No Lock-in Effect No transfers

1946-1982 1982-2018 1946-1982 1982-2018 1946-1982 1982-2018

σE 16.93 27.37 16.47 35.67 15.59 33.71

RATE 58.06 74.01 66.38

No buybacks No learning (RE) No Great Moderation

1946-1982 1982-2018 1946-1982 1982-2018 1946-1982 1982-2018

σE 16.95 24.32 0.00 0.00 16.93 29.87

RATE 83.26 0.00 60.92

3.5.- The Equity Premium

While the main topic of the paper is the volatility of the Price-Dividend ratio and related questions

as predictability or informational efficiency, the model has also some implications for the equity

premium. This section explores them.

Table 8 reports the mean returns for bonds and stocks implied by the model. The average mean

return is always above 4% and it is barely changed after the 1980s as in the data; the mean risk-free

rate is close to 1% both pre- and post-1980s and, at odds with the data, it increases in the second
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subperiod in the model. While it is clear that the model does not produce a low enough risk-free

rate, it is still remarkable that it generates an equity premium of about 4% while using realistic

consumption and dividend growth processes, a non-negative discount factor and a low risk aversion

coefficient, which are the elements of the risk premium puzzle identified by Cochrane (2017).

Table 8: The model performance regarding the equity premium. This table reports the the mean stock
and bond returns from. The first two columns report the statistics for the US data. The next four columns
report model-implied statistics and their t-statistics using the Table 2’s parameters. The returns are in real
terms and annualized.

US data Baseline Model

1946-1982 1982-2018 1946-1982 1982-2018

Ŝj Ŝj S̃j(θ̂) t-stat S̃j(θ̂) t-stat

E(rst ) 4.73 4.34 4.78 -0.07 4.66 -0.42

E(rbt ) 0.41 0.35 0.72 -18.77 1.14 -24.32

To explore the drivers of the relatively good performance, I first examine stock returns through

the following decomposition of their geometric mean, first suggested in Adam et al. (2016).

(
N∏
t=1

Pt +Dt

Pt−1

) 1
N

︸ ︷︷ ︸
rs

=

(
N∏
t=1

Dt

Dt−1

) 1
N

︸ ︷︷ ︸
R1

(
PDN + 1

PD0

) 1
N

︸ ︷︷ ︸
R2

(
N−1∏
t=1

PDt + 1

PDt

) 1
N

︸ ︷︷ ︸
R3

(70)

Thus, the mean gross return can be understood as the product of three elements. The first

term (R1) is the mean dividend growth. The second term (R2) is the ratio of the terminal to the

initial value of the PD ratio, which could be related to the existence of a time trend. Finally, the

last term (R3) is a convex function of period t PD ratio. It increases with the volatility of the PD

time series, but decreases with its mean.

Table 9 reports the decomposition using empirical and simulated data. Since the dividend

growth process has been parameterized directly from the data, the models exactly replicate R1.

Regarding R2, the model moves in the right direction, although not as strongly as in the data.

This relative mismatch of the model is partly due to the pre and post-1982 division; the CGT falls

temporarily at the end of the first subsample and beginning of the second subsample, bringing

the PD ratio up during the final quarter of the 1st subsample and the initial quarters of the 2nd

subperiod. As a result, R2 gets too high (low) in 1946-1982 (1982-2018). R3 is reasonably close

to the data, as expected from its good behavior in terms of the mean and the variance of the PD

ratio.

While macro-finance models typically need either a high risk-aversion level or high fundamental
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Table 9: Decomposition of the stock return geometric mean. The table shows the stock returns mean
decomposition according to expression (70). The first column uses U.S. data; the second, simulated data
using the baseline model, using the parameters in table 2.

US data Baseline model

1946-1982 1982-2018 1946-1982 1982-2018

E(R1) 0.46 0.74 0.46 0.74

E(R2) -0.27 0.88 0.41 0.73

E(R3) 4.10 2.37 3.83 2.55

E(rs) 4.30 4.03 4.74 4.06

volatility to match the mean returns, this paper resort to alternative forces. In line with the

Learning literature, non-fundamental volatility coming from subjective beliefs makes compatible

realistic income processes with high and volatile stock returns. However, belief volatility is unable

to do all the job (Adam et al. (2016), Adam et al. (2017)). Thus, the introduction of tax cuts helps

in getting an increase in R2. Crucially, these elements barely affect the risk-free rate, since there is

no feedback loop affecting the bond price due to its one-period maturity.

4.- Conclusion

This paper has analyzed how a Capital Gains Tax influences asset price booms and busts. I have

studied this issue using an asset pricing model à la Lucas (1978) with learning about prices as in

Adam et al. (2017) and a tax on capital gains upon realization. The central theoretical result is

that the variance of the Price-Dividend ratio is decreasing on the CGT level, since taxes dampen

the pass-through from beliefs to prices. Although the existence of a lock-in effect counteracts this

logic, the ability of taxes to stabilize taxes prevails if the tax elasticity of realization is not too

negative.

The theory has been applied to the United States to connect the recurrence of asset price cycles

in the middle of the Great Moderation, a troubling observation for many macro-finance models,

to the observed decline in the effective CGT. The structural estimation of the model reveals that

the CGT cuts account for 40% of the observed increase in the volatility of the stock market. The

model also replicates a comprehensive list of asset pricing moments and their dynamics such as the

rise in stock market valuations, a sizable equity premium, the reduction in return predictability,

the procyclicality of beliefs, or the increase in the elasticity of prices to beliefs. Furthermore, the

model implies a notable reduction in stock market informational efficiency, related to higher role

of subjective beliefs partly induced by lower taxes.
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The research has left some issues open. The decline in capital taxes since the 1980s was a global

phenomenon, so an international analysis of its effects on financial instability and its possible

interaction with financial deregulation and capital flows liberalization appears as an interesting

research avenue. Besides, corporate taxes went down substantially in the same period, which might

directly affect the payouts that I took as exogenous, as well as having interesting implications for

investment or productivity dynamics. Furthermore, the theoretical framework has not addressed

the issue of optimal capital gains taxation, considering both financial stability and public finance

perspectives.

In conclusion, the paper’s discussions imply that a tax on capital gains could play a relevant

role in regulating asset price booms and busts. Hence, while the ability of a Financial Transaction

Tax to prevent excessive price volatility has been widely questioned, this paper suggests that a

Capital Gains Tax might be an effective alternative.
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Appendix A: Data Sources

Stock market data. Stock prices, dividends and CPI inflation comes from Robert Shiller

database. They can be downloaded here: http://www.econ.yale.edu/~shiller/data.htm. The

risk-free rate is the 90 days T-Bill, from the FRED database https://fred.stlouisfed.org/

series/TB3MS.

The data has been transformed into quarterly frequency by taking the last month of the con-

sidered quarter. Besides, the nominal variables have been transformed to real terms using Shiller’s

CPI inflation index. Finally, as is standard in the literature, I have deseasonalize dividends (by

taking the average over the current and past 3 quarters) to compute the price-dividend ratio.

Macroeconomic data. Consumption data is the BEA real quarterly personal consumption

expenditures series. Wages are the BEA compensation of employees. When computing the Wage-

Dividends ratio, I use the Net Dividends from the BEA (Corporate Profits after tax with IVA and

CCAdj: Net Dividends).

Capital tax rates.The base effective average marginal rates on dividends, short and long cap-

ital gains and interests are supplied by the TAXSIM program of the National Bureau of Economic

Research (NBER). See Feenberg and Coutts (1993) for a description of the program. They can

be found here https://taxsim.nber.org/marginal-tax-rates/. These rates are offered on an

annual basis from 1960 to 2018 at federal level and from 1979 to 2008 at state level. I took the

rates computed using 1984 national data for each state and year.

Following Sialm (2009), I adjusted for state and local taxes before 1979 and after 2008 as well

as for the distinction between qualified and non-qualified dividends from 2003 on to get a complete

series for the 1960-2018 period. Before 1960, τdt , τ
skg
t , τ lkgt and rates are taken from Sialm (2009).

τBt are interpolated.

The weights for the convex combination are computed using the dividend, short and long capital

gains yields offered by Sialm (2009). They are averaged over the 1954-2006 period. Letting them

vary barely change the synthetic rate. For details on the taxable share, see Appendix C.

Capital gains. The total realized capital gains are a 5 year moving average on the capital

gains reported in the adjusted gross income, coming from the IRS. As for total capital gains, I use

a 5 year moving average of the nominal taxable gains, obtained from the Financial Accounts. I am

grateful to Jacob Robbins for providing these data, coming from his paper ?. The portion of capital

gains coming from equities is obtained from the US Financial Accounts, covering the 1951-2018 on

a quarterly basis. Finally, the portion of realized capital gains coming from equities is computed
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using data from the IRS for the year 1985 and 1997-2012.

Survey expectations. For the test of the tax indirect effect, I have used the UBS survey

is the UBS Index of Investor Optimism. The quantitative question on stock market expectations

has been surveyed over the period Q2:1998-Q4:2007 with 702 responses per month on average.

To make the data consistent with the model, I have run some adjustment. First, the series have

been deflated by using inflation expectations from the Michigan Surveys of Consumers, available at

https://data.sca.isr.umich.edu/data-archive/mine.php. Second, I transformed real returns

expectations into capital gains expectations by subtracting the mean dividend growth along the

period over each period price-dividend ratio.

Appendix B: Proofs.

B1.- Proof of Proposition 1.

Consider the pricing formula (6) in the main text. If follows Pt/Dt = p(βg
t ) with β

g
t = (βDt , β

P
t , β

M
t ).

Take a first-order Taylor approximation around b ∈ R3. Then,

Pt

Dt
≈ p(b) + ω(βg

t − b) (71)

with ω = ∇p(b). Take the variance of both sides such that

V
[ Pt

Dt

]
≈ ω(τ)Σω(τ)T (72)

where Σ is the variance-covariance matrix of beliefs. The effect of taxes on the mapping from Σ to

the PD variance is determined by the signs and magnitudes of the elements of the following matrix

∂

∂τ
∇ΣV(Pt/Dt) =


2ω1ω

′
1 ω′

1ω2 + ω1ω
′
2 ω′

1ω3 + ω1ω
′
3

ω′
1ω2 + ω1ω

′
2 2ω2ω

′
2 ω′

2ω3 + ω2ω
′
3

ω′
1ω3 + ω1ω

′
3 ω′

2ω3 + ω2ω
′
3 2ω3ω

′
3

 (73)

where ω′
j is the derivative with respect to τ . I provide sufficient conditions which are reasonable to

establish the signs of the matrix elements. Start with the partial derivatives of the PD ratio with

respect to beliefs (keeping them as a function of βg
t ):

ω1 =
1

1− (1− πτ)βPt − πτβMt
(74)
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ω2 =
βDt (1− πτ)

(1− (1− πτ)βPt − πτβMt )2
(75)

ω3 =
βDt πτ

(1− (1− πτ)βPt − πτβMt )2
(76)

Since πτ ∈ (0, 1), βg
t > 0, ω2 and ω3 are positive. In turn, ω1 is also positive if 1 > βPt −πτ(βPt −βMt ).

Condition i and ii are sufficient for that. Let us look now at ∂
∂τω:

ω′
1 = − π(βPt − βMt )

(1− (1− πτ)βPt − πτβMt )2
(77)

ω′
2 = − πβDt

(1− (1− πτ)βPt − πτβMt )2

(
1 +

2(1− πτ)(βPt − βMt )

1− (1− πτ)βPt − πτβMt

)
(78)

ω′
3 =

πβDt
(1− (1− πτ)βPt − πτβMt )2

(
1− 2πτ(βPt − βMt )

1− (1− πτ)βPt − πτβMt

)
(79)

βPt > βMt (implied by condition ii) ensures ω′
1 and ω′

2 are negative. On the contrary, a sufficient

condition for ω′
3 to be positive is βPt −βMt <

1−βP
t

πτ , which is likely to be met for standard parameters

values. Given these signs, it is clear that all the elements in the matrix except those involving ω′
3

are negative. Now I proceed to check these elements. It turns out that condition ii. is sufficient to

ensure ω′
1ω3 + ω1ω

′
3 < 0 and ω′

2ω3 + ω2ω
′
3 < 0. Under conditions i and ii, the only positive element

is 2ω3ω
′
3. Condition iii guarantees that ω3ω

′
3V(βMt ) < ω2ω

′
2V(βPt ). The only condition that has not

been justified is βMt < 1. Take condition ii and isolate βPt such that βPt >
1+3πτβM

t
1+3πτ . If βMt ≥ 1,

then βPt ≥ 1, which contradicts condition i.

B2.- Proof of Proposition 2.

Proposition 2.1. Rational Expectations.

Consider the RE pricing formula (10). It follows PRE
t /Dt = p1(dt). Take a first-order Taylor

approximation around the constant µ. Then,

PRE
t

Dt
≈ p1(µ) + ωRE(dt − d) (80)

with ωRE =
∂PRE

t /Dt

∂dt
evaluated at µ. Taking the variance of both sides

V
[ Pt

Dt

]
≈ (ωRE)2V(dt) (81)
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From (8), V(dt) =
σ2
d

1−ρ2
. Then, taxes affect the variance of the PD ratio only through ω. To

study this channel, consider
∂(ωRE)2

∂τ
= 2ωRE ∂ω

RE

∂τ
(82)

ωRE reads as

ωRE =
∞∑
j=1

f0(τ, j)f1(µ, j)
ρ

1− ρ
(1− ρj) (83)

which has a positive sign since 0 < ρ < 1. Then, the sign of the effect of taxes on the volatility of

the PD ratio is determined by

∂ωRE

∂τ
=
∑
j

f1(µ, j)
ρ

1− ρ
(1− ρj)

∂f0(τ, j)

∂τ
(84)

Given,

f0(τ, j) =
( δ

1− δπτ

)j
(1− πτ)j−1 (85)

∂f0(τ, 1)/∂τ = δ2π/(1− δπτ)2 > 0 while for any j > 1,

∂f0(τ, j)

∂τ
=
πδj(1− πτ)j−1

(1− δπτ)j

(jδ(1− πτ)

1− δπτ
− (j − 1)

)
(86)

whose sign is negative only if

j >
1− δπτ

1− δ
≡ j̃

In other words, the negative effect starts to dominate only in the distant future. Hence, for

∂ωRE

∂τ < 0, it must be that the negative terms outweigh the positive ones, that is,

∂ωRE

∂τ
=

ρ

1− ρ

(
j̃∑

j=1

f1(µ, j)(1− ρj)
∂f0(τ, j)

∂τ︸ ︷︷ ︸
Factor 1>0

+
∞∑

j̃=j+1

f1(µ, j)(1− ρj)
∂f0(τ, j)

∂τ︸ ︷︷ ︸
Factor 2<0

)
(87)

I want to show |Factor 1| < |Factor 2|. For that, it is enough to show that ∂f0(τ,j)
∂τ becomes

increasingly negative with j and f1(dt, j) increasingly positive. Towards that end, note

lim
j→∞

∂f0(τ, j)

∂τ
= −∞ (88)

Additionally, consider f1(µ, j)(1 − ρj), which affects the final balance. Since ρ ∈ (0, 1), (1 − ρj)
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gets larger with j. Besides, it turns out that

∂f1(µ, j)

∂j
= f1(dt, j)

(
µ+

σ2d
2(1− ρ)2

(
1 +

2ρjj

1− ρ
− 2ρ2j+1j

1− ρ2

))
(89)

The sign of the derivative is determined by 1− ρ2 − ρj + ρj+1, which converges to 1− ρ2 > 0 when

j tends to ∞. Hence, as j gets larger, the negative effects of τ increase.

Proposition 2.2. Learning.

Consider the equilibrium pricing function under Learning, equation (20) in the main text. It follows

PL
t /Dt = p2(xt) with xt = (lnβt, dt). Take a first-order Taylor approximation around x = (µ, µ).

Then,
PL
t

Dt
≈ p2(x) + ω

L(xt − x) (90)

with ωL = ∇p2(x). Take the variance of both sides such that

V
[ Pt

Dt

]
≈ ωLΣL(ωL)T (91)

The proposition claims ∂ωL

∂τ < 0. Note that

ωL
1 = ρ

δexp
{
µ+ σ2d/2

}
1− (1− πτ)δexp

{
µ+

σ2+σ2
b+σ2

P
2

}
− δπτ

(92)

which is always positive under the assumptions made. Its derivative with respect to τ reads as

∂ωL
1

∂τ
= −

ρδexp
{
µ+ σ2d/2

}
πδ
(
exp
{
µ+

σ2+σ2
b+σ2

P
2

}
− 1
)

(
1− (1− πτ)δexp

{
µ+

σ2+σ2
b+σ2

P
2

}
− δπτ

)2 (93)

A sufficient condition for it to be negative is
(
exp
{
µ+

σ2+σ2
b+σ2

P
2

}
−1
)
> 0, that is, agents expected

positive price growth. In addition,

ωL
2 =

δ2exp
{
µ+ σ2d/2

}
(1− πτ)

(
exp
{
µ+

σ2+σ2
b+σ2

P
2

}
− 1
)

(
1− (1− πτ)δexp

{
µ+

σ2+σ2
b+σ2

P
2

}
− δπτ

)2 (94)
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which is positive since πτ < 1. Take its derivative with respect to τ

∂ωL
2

∂τ
=−

ρδ2exp
{
µ+ σ2d/2

}(
exp
{
µ+

σ2+σ2
b+σ2

P
2

}
− 1
)

(
1− (1− πτ)δexp

{
µ+

σ2+σ2
b+σ2

P
2

}
− δπτ

)2
−

2δ2exp
{
µ+ σ2d/2

}
(1− πτ)

(
exp
{
µ+

σ2+σ2
b+σ2

P
2

}
− 1
)

(
1− (1− πτ)δexp

{
µ+

σ2+σ2
b+σ2

P
2

}
− δπτ

)3 δπ
(
exp
{
µ+

σ2 + σ2b + σ2P
2

}
− 1
)

(95)

which is positive provided agents expect positive price growth. Hence, ∂ωL

∂τ < 0 in an expected

growth environment.

Now I move to characterize ΣL. First, consider the following 2nd order difference equation

characterizing the dynamics of lnβt

lnβt = lnβt−1+g

(
ln
exp
{
(1− ρ)µ+ ρdt−1 + σ2d/2

}
exp
{
(1− ρ)µ+ ρdt−2 + σ2d/2

} 1− (1− πτ)δexp
{
lnβt−2 +

σ2+σ2
b+σ2

P
2

}
− δπτ

1− (1− πτ)δexp
{
lnβt−1 +

σ2+σ2
b+σ2

P
2

}
− δπτ

+dt−1−lnβt−1

)
(96)

Note lnβt = f(lnβt−1, lnβt−2, dt−1, dt−2). Use a first-order Taylor approximation around x =

(µ, µ, µ, µ). Then,

lnβt ≈ κ+Alnβt−1 + Blnβt−2 + Cdt−1 +Ddt−2 (97)

with κ collecting all the constants in the approximation and caligraphic letters being the deriva-

tive of lnβt with respect to every input evaluated at x. Then, the dynamics of (lnβt, dt) can be

represented as the following VAR(2):

lnβt
dt

 =

 κ

(1− ρ)µ

+

A C

0 ρ

lnβt−1

dt−1

+

B D

0 0

lnβt−2

dt−2

+

 0

εdt

 (98)

Transform it into a VAR(1):


lnβt

dt

lnβt−1

dt−1

 =


κ

(1− ρ)µ

0

0

+


A C B D

0 ρ 0 0

1 0 0 0

0 1 0 0




lnβt−1

dt−1

lnβt−2

dt−2

+


0

εdt

0

0

 (99)
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or, in matrix form,

Zt = κ̃+ΦZt−1 + ηt (100)

with

ηt ∼ N




0

0

0

0

 ,


0 0 0 0

0 σ2d 0 0

0 0 0 0

0 0 0 0



 (101)

Assume stationarity. Apply the variance operator on both sides of the last expression. Then,

Γ = ΦΓΦT + Ω̃ (102)

where Γ is the covariance matrix of Zt and Ω̃ is the covariance matrix of ηt. Vectorize the matrixes

to represent the matrix product using the Kronecker product,

vec(Γ) = (Φ⊗ Φ)vec(Γ) + vec(Ω̃) (103)

Then,

vec(Γ) = (I − Φ⊗ Φ)−1vec(Ω̃) (104)

Solving this equation, we get

V(lnβt) =
2CD(A+ ρ(1− B2 +ABρ)) + (C2 +D2)(1 +Aρ+ B(ρ(A+ ρ(1− B))))

((1 + B)(1 +A− B)(1−A− B)(1− ρ(A+ Bρ))︸ ︷︷ ︸
≡ν(τ)

σ2d
(1− ρ2)

(105)

Cov(lnβt, dt) =
ρ(C + ρD)

(1− ρ(A+ ρB))︸ ︷︷ ︸
≡υ(τ)

σ2d
(1− ρ2)

(106)

The conditions required for stationarity ensure V(lnβt) > 0 and Cov(lnβt, dt) [show it]. It can be

shown that ∂V(lnβt)/∂τ < 0 when g is small and πτ are not too large [show it]. Focus now on the

effect of taxes on

∂Cov(lnβt, dt)
∂τ

= −
(δ − 1)exp

{
µ+

σ2+σ2
b+σ2

P
2

}
g2πρ2(ρ2 − ρ− 1)

(1 + ρ)

(
exp
{
µ+

σ2+σ2
b+σ2

P
2

}
(−1 + ρ− 2gρ+ gρ2)(1− πτ) + (1 + (−1 + g)ρ)(1− δπτ)2

)2σ
2
d

(107)
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It is clear that the denominator is positive. The numerator is too since δ < 1 so that (δ − 1) < 0

and 0 < ρ < 1 implies ρ2 < ρ and then (ρ2− ρ− 1) < 0. Hence, the derivative has a negative sign.

Appendix D: Computing the non-taxable share

The evolution of the effective capital tax rates depends essentially on two factors: statutory rates

and regulations. Legal regulations are accounted for by the NBER TaxSim rates. The important

exception is the amount of capital income accruing to non-taxable units, as pension funds, IRAs

or non-profit institutions. The Financial Accounts of the United States, run by the Fed, report the

household share of corporate equity. Some takes that as a proxy for the taxable share of ownership,

but that overestimate it given the inclusion of IRAs (see Rosenthal and Austin (2016) for a critical

review of the different measures). Therefore, the goal is to get an estimate of the fraction of equities

hold by households in taxable accounts. I follow Rosenthal and Austin (2016).

Table 10 reports the steps followed to compute the taxable share. Essentially, it amounts to

an adjustment of the Fed’s households equity share, considering IRAs, indirect holdings and so on.

Here I detail the abbreviations dictionary: CE = corporate equities; HHNPI = households and

nonprofit institutions; RoW = rest of the world; ETF = exchange traded fund; CEF = closed-end

fund; REIT = real estate investment trust; C-CE = C corporations CE; MF = mutual funds;

IRA = investment retirement accounts. The variables comes from the Federal’s Reserve Financial

Accounts of the United States, except for those variables whose construction is explained in the

table. Besides, as in Rosenthal and Austin (2016), the stock held in self- directed IRAs is based on

data from the Investment Company Institute. Calculations files are available upon request.

Figure 7 plots the estimated taxable share from 1951:IV to 2018:IV. As observed, it displays a

steady decline until the early 2000s, when stabilizes around 30%. In other words, there was a big

structural change in the stock ownership, moving it away from taxable units.
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Figure 7: Taxable share evolution. The graph plots the taxable share of equity income, estimated following
the procedure explained above. It uses data from 1951:IV to 2018:IV.

Appendix E: Projection facility

The equilibrium PD ratio given by ?? faces a discontinuity. For this reason, simulation requires to

set up the following modified belief updating equation to ensure non-negative prices

βt+1 = w

(
exp

{
lnβt(1− g) + gln

Pt

Pt−1

})
(108)

where

w(x) =


x if x ≤ βLt

βLt +
x−βL

t

x+βU
t −2βL

t
(βUt − βLt ) if x > βLt

(109)

and

βqt = PDq
{
PDqξδ(1− πτKt+1)

2 + χδ(1− πτKt+1)
(Wt+1

Dt+1
+ 1− τDt+1 + πτKt+1

Pt

Dt

Dt

Dt+1

)}−1

(110)

for q = L,U . Thus, this projection facility starts to dampen belief coefficients that imply a

price-dividend ratio equal to PDL and sets an effective upper bound at PDU . Projection facilities

are usual devices in this sort of algorithms (see Ljung (1977)); particularly, (109) is similar to the
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one used by Adam et al. (2016). It can be understood in a Bayesian sense, so that agents attach

zero probability to beliefs coefficients implying a PD ratio higher than PDU .

Appendix F: Parameterized Expectations Algorithm

In the spirit of Hakansson (1970), the proposed approximating function ψ is

C∗
t

Dt
= Ē(Xt) ≈ ψ(Xt;χ) = cyt Yt + cwt

Pt

Dt
St−1 (111)

where cyt ≡ 1 − χδ(1 − τDt )βD is the time-varying propensity to consume out of income, Yt

collects all the income sources (wages, dividends, net transfers) normalized by dividends, cwt ≡

1 − χδ(1 − τKt )βt is the propensity to consume out of wealth, and χ is a parameter of ψ to be

estimated. To evaluate the performance of this approximating function, χ must be estimated. To

do so, I resort to simulation and Montecarlo integration. The algorithm involves the following

steps:

1. Draw a series of the exogenous processes for a large T.

2. For a given χ ∈ Rn, recursively compute the series of the endogenous variables.

3. Minimize the Euler Equation square residuals using non-linear least squares

G(χ) = argmin
ξ∈Rn

1

(T − T )

T∑
t=T

[
ϕ
(
zPt+1(χ), εt+1, zt(χ)

)
− ψ(Xt(χ); ξ)

−γ

δ

]2

with T are some initial periods burned. ϕ is the interior of the conditional expectation Ē(Xt),

z are the endogenous variables and ϵ the exogenous shocks.

Note the interior of the expectation must be computed according to investor’s beliefs. Since

investors know the process for dividends and wage-dividends, the only problematic objects

are next period prices and next period consumption. Using agents subjective price model

βPt+1 = βitνt+1 ⇒
(Pt+1

Pt

)P
= βitνt+1ε

p
t+1 ⇒

( Pt+1

Dt+1

)P
=
(Pt+1

Pt

)P Dt

Dt+1

Pt

Dt
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In turn, expected consumption reads

CP
t+1

Dt+1
= (1−χδ(1−πτKt+1)β

P
t+1)

(( Pt+1

Dt+1

)P
+1−τDt+1+

Wt+1

Dt+1
−πτKt+1

[( Pt+1

Dt+1

)P
− Pt

Dt

Dt

Dt+1

])
(112)

4. Find a fixed point χ = G(χ). For that, update χ following

χj+1 = χj + d(G(χj)− χj) (113)

where j iteration number and d the dampening parameter.

To evaluate how good the approximation is, I explore the size of the errors in consumption

terms. Approximation errors are given by

ut+1 = δϕ
(
zt+1, εt+1, zt

)−1/γ
− ψ(χ;xt)

The criterion to determine the degree of accuracy is the Bounded Rationality Measure (Judd

(1992)):

J = log10

(
Et

∣∣∣∣∣ut+1

Ct
Dt

∣∣∣∣∣
)

(114)

being J a dimension-free quantity that expresses that error as a fraction of current consumption.

For the baseline model, J = -5.99. It is equivalent to a mistake of $1 out of a million. The Mean

Square Error is 5.71e-06. Figure 8 plots the histogram of J for 10.000 simulations of the model.

Solving the model with the lock-in effect

Algorithm to compute mt:

1. Approximate the conditional expectation determining µt+1 via a function Ψ(Xt), where Xt

is a vector of state variables, that is:

µt+1 = (τK)1+ξMt+1 = (τK)1+ξE(Xt+1) ≈ (τK)1+ξΨ(Xt+1) (115)

In particular, I use this linear polynomial:

Ψ(Xt) = α0 + α1βt + α2Gt + α3
Pt

Dt
(116)

59



6.5 6.0 5.5 5.0
Judd Bounded Rationality Measure

0

20

40

60

80

100

120

140

160

Figure 8: Histogram of the Judd Bounded Rationality Measure. The histogram plots the Judd
criterion as defined by equation (114) resulting from 10.000 simulations of the model.

2. For a given vector α, compute the expectation of µt conditional on the information at time

t, that is

mt = EP
t (µt+1) = EP

t (E(Xt+1)) ≈ EP
t (Ψ(Xt+1)) (117)

(a) Future state variables depend on four shocks:

i. βt+1 is predetermined: βt+1 = βt(1− g) + g
(

Pt
Dt

Dt
Dt−1

Dt−1

Pt−1

)
ii. Gt+1/Dt+1 depends on εDt+1:

Gt+1

Dt+1
=
Pt/Dt − Pt−1/Dt−1Dt−1/Dt − ϕ(π̄t)Gt/Dt

βD + εDt+1

iii. Pt+1/Dt+1 depends on (according to the subjective price model):

Pt+1

Dt+1
=
Pt+1

Pt

Pt

Dt

Dt

Dt+1
=
Pt

Dt

βt + ut + νt+1 + εPt+1

βD + εDt+1

(b) Use the Gauss-Hermite quadrature rule extended to the multidimensional case:

i. Let {qi, ωi}Ii=1 be a set of Hermite nodes and weights.

ii. Note Ψ(Xt+1) = Ψ(Xt, ε
D
t+1, ut, νt+1, ε

P
t+1).
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iii. Using the quadrature, each shock εxt+1 is replaced by
√
2σxqh (shocks are zero-mean

Normally distributed) such that the expectation is computed as:

mt ≈ EP
t (Ψ(Xt+1)) = π−N/2

∑
i

∑
j

∑
k

∑
l

Ψ(Xt, qi, qj , qk, ql)ωiωjωkωl

where N is the number of shocks.

3. Note that mt = m(Pt/Dt, ·) such that

Pt

Dt
=

δ(1− τD)βD

1− δβt(1− (τK)1+ξm(Pt/Dt, ·))− δ(τK)1+ξm(Pt/Dt, ·)
(118)

That is a nonlinear equation that can be solved numerically.

4. Estimate α via PEA.

61


